Loading…

DOA estimation of correlated sources using SMT

This paper uses a recently developed technique that relies on the Sparse Matrix Transform (SMT) to estimate the covariance matrix of D signals received by M-elements linear antenna array, each signal is of length N (the number of snapshots is N where N

Saved in:
Bibliographic Details
Main Author: Jouny, Ismail
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Jouny, Ismail
description This paper uses a recently developed technique that relies on the Sparse Matrix Transform (SMT) to estimate the covariance matrix of D signals received by M-elements linear antenna array, each signal is of length N (the number of snapshots is N where N
doi_str_mv 10.1109/APS.2010.5560973
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5560973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5560973</ieee_id><sourcerecordid>5560973</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a3849387148ff87a3490f5ec5655035f3dc063abf2dbcb367b08a5f012020a1a3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheOjYFvdC27yBzLe5ObmsRxqfUClQuu6ZGYSGakdmUwX_nsHLLg6HD74OBzGbiUUUoK_L982hYKxERnwFs_YTGqltfbG0TmbSq-tkNrLi39g7eUISCmB3tCETT0IowG9vWKznD8BFFpJU1Y8rEse89B-haHtDrxLvO76Pu7DEBueu2Nfx8yPuT188M3r9ppNUtjneHPKOXt_XG4Xz2K1fnpZlCvRSkuDCOi0R2eldik5G1B7SBRrMkSAlLCpwWCokmqqukJjK3CBEkgFCoIMOGd3f942xrj77sd5_c_udAD-AtoVRss</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DOA estimation of correlated sources using SMT</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jouny, Ismail</creator><creatorcontrib>Jouny, Ismail</creatorcontrib><description>This paper uses a recently developed technique that relies on the Sparse Matrix Transform (SMT) to estimate the covariance matrix of D signals received by M-elements linear antenna array, each signal is of length N (the number of snapshots is N where N &lt;; M). SMT based covariance estimation is particularly suited for singular covariance matrices and those with small eigenvalues. Direction of arrival (DOA) estimation using the MUSIC algorithm relies on estimating the eigenvectors associated with the noise eigenvalues which are usually minimal. Also, when the sources impinging on an array are correlated, the covariance matrix is singular, and the performance of the MUSIC algorithm degrades significantly depending on the degree of correlation among sources. This makes SMT particularly suited for DOA estimation using MUSIC for partially or fully correlated sources, and especially scenarios where it is not practical to take a large number of snapshots (such as radar applications). This paper employs SMT in the MUSIC algorithm using real radar backscatter data as the sources. Limitations and benefits of SMT based DOA estimation are discussed.</description><identifier>ISSN: 1522-3965</identifier><identifier>ISBN: 1424449677</identifier><identifier>ISBN: 9781424449675</identifier><identifier>EISSN: 1947-1491</identifier><identifier>EISBN: 1424449685</identifier><identifier>EISBN: 9781424449682</identifier><identifier>DOI: 10.1109/APS.2010.5560973</identifier><identifier>LCCN: 90-640397</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Covariance matrix ; Direction of arrival estimation ; Estimation ; Multiple signal classification ; Noise ; Radar</subject><ispartof>2010 IEEE Antennas and Propagation Society International Symposium, 2010, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5560973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5560973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jouny, Ismail</creatorcontrib><title>DOA estimation of correlated sources using SMT</title><title>2010 IEEE Antennas and Propagation Society International Symposium</title><addtitle>APS</addtitle><description>This paper uses a recently developed technique that relies on the Sparse Matrix Transform (SMT) to estimate the covariance matrix of D signals received by M-elements linear antenna array, each signal is of length N (the number of snapshots is N where N &lt;; M). SMT based covariance estimation is particularly suited for singular covariance matrices and those with small eigenvalues. Direction of arrival (DOA) estimation using the MUSIC algorithm relies on estimating the eigenvectors associated with the noise eigenvalues which are usually minimal. Also, when the sources impinging on an array are correlated, the covariance matrix is singular, and the performance of the MUSIC algorithm degrades significantly depending on the degree of correlation among sources. This makes SMT particularly suited for DOA estimation using MUSIC for partially or fully correlated sources, and especially scenarios where it is not practical to take a large number of snapshots (such as radar applications). This paper employs SMT in the MUSIC algorithm using real radar backscatter data as the sources. Limitations and benefits of SMT based DOA estimation are discussed.</description><subject>Arrays</subject><subject>Covariance matrix</subject><subject>Direction of arrival estimation</subject><subject>Estimation</subject><subject>Multiple signal classification</subject><subject>Noise</subject><subject>Radar</subject><issn>1522-3965</issn><issn>1947-1491</issn><isbn>1424449677</isbn><isbn>9781424449675</isbn><isbn>1424449685</isbn><isbn>9781424449682</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtLAzEUheOjYFvdC27yBzLe5ObmsRxqfUClQuu6ZGYSGakdmUwX_nsHLLg6HD74OBzGbiUUUoK_L982hYKxERnwFs_YTGqltfbG0TmbSq-tkNrLi39g7eUISCmB3tCETT0IowG9vWKznD8BFFpJU1Y8rEse89B-haHtDrxLvO76Pu7DEBueu2Nfx8yPuT188M3r9ppNUtjneHPKOXt_XG4Xz2K1fnpZlCvRSkuDCOi0R2eldik5G1B7SBRrMkSAlLCpwWCokmqqukJjK3CBEkgFCoIMOGd3f942xrj77sd5_c_udAD-AtoVRss</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Jouny, Ismail</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>DOA estimation of correlated sources using SMT</title><author>Jouny, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a3849387148ff87a3490f5ec5655035f3dc063abf2dbcb367b08a5f012020a1a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arrays</topic><topic>Covariance matrix</topic><topic>Direction of arrival estimation</topic><topic>Estimation</topic><topic>Multiple signal classification</topic><topic>Noise</topic><topic>Radar</topic><toplevel>online_resources</toplevel><creatorcontrib>Jouny, Ismail</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jouny, Ismail</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DOA estimation of correlated sources using SMT</atitle><btitle>2010 IEEE Antennas and Propagation Society International Symposium</btitle><stitle>APS</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1522-3965</issn><eissn>1947-1491</eissn><isbn>1424449677</isbn><isbn>9781424449675</isbn><eisbn>1424449685</eisbn><eisbn>9781424449682</eisbn><abstract>This paper uses a recently developed technique that relies on the Sparse Matrix Transform (SMT) to estimate the covariance matrix of D signals received by M-elements linear antenna array, each signal is of length N (the number of snapshots is N where N &lt;; M). SMT based covariance estimation is particularly suited for singular covariance matrices and those with small eigenvalues. Direction of arrival (DOA) estimation using the MUSIC algorithm relies on estimating the eigenvectors associated with the noise eigenvalues which are usually minimal. Also, when the sources impinging on an array are correlated, the covariance matrix is singular, and the performance of the MUSIC algorithm degrades significantly depending on the degree of correlation among sources. This makes SMT particularly suited for DOA estimation using MUSIC for partially or fully correlated sources, and especially scenarios where it is not practical to take a large number of snapshots (such as radar applications). This paper employs SMT in the MUSIC algorithm using real radar backscatter data as the sources. Limitations and benefits of SMT based DOA estimation are discussed.</abstract><pub>IEEE</pub><doi>10.1109/APS.2010.5560973</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-3965
ispartof 2010 IEEE Antennas and Propagation Society International Symposium, 2010, p.1-4
issn 1522-3965
1947-1491
language eng
recordid cdi_ieee_primary_5560973
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Covariance matrix
Direction of arrival estimation
Estimation
Multiple signal classification
Noise
Radar
title DOA estimation of correlated sources using SMT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DOA%20estimation%20of%20correlated%20sources%20using%20SMT&rft.btitle=2010%20IEEE%20Antennas%20and%20Propagation%20Society%20International%20Symposium&rft.au=Jouny,%20Ismail&rft.date=2010-07&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1522-3965&rft.eissn=1947-1491&rft.isbn=1424449677&rft.isbn_list=9781424449675&rft_id=info:doi/10.1109/APS.2010.5560973&rft.eisbn=1424449685&rft.eisbn_list=9781424449682&rft_dat=%3Cieee_6IE%3E5560973%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a3849387148ff87a3490f5ec5655035f3dc063abf2dbcb367b08a5f012020a1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5560973&rfr_iscdi=true