Loading…

Linearity testing in characteristic two

Let Dist(f,g)=Pr/sub u/[f(u)/spl ne/g(u)] denote the relative distance between functions f,g mapping from a group G to a group H, and let Dist(f) denote the minimum, over all linear functions (homomorphisms) g, of Dist(f,g). Given a function f:G/spl rarr/H we let Err(f)=Pr/sub u,/spl upsi//[f(u)+f(/...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 1996-11, Vol.42 (6), p.1781-1795
Main Authors: Bellare, M., Coppersmith, D., Hastad, J., Kiwi, M., Sudan, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let Dist(f,g)=Pr/sub u/[f(u)/spl ne/g(u)] denote the relative distance between functions f,g mapping from a group G to a group H, and let Dist(f) denote the minimum, over all linear functions (homomorphisms) g, of Dist(f,g). Given a function f:G/spl rarr/H we let Err(f)=Pr/sub u,/spl upsi//[f(u)+f(/spl upsi/)/spl ne/f(u+/spl upsi/)] denote the rejection probability of the Blum-Luby-Rubinfeld (1993) linearity test. Linearity testing is the study of the relationship between Err(f) and Dist(f), and in particular lower bounds on Err(f) in terms of Dist(f). We discuss when the underlying groups are G=GF(2)/sup n/ and H=GF(2). In this case, the collection of linear functions describe a Hadamard code of block length 2/sup n/ and for an arbitrary function f mapping GF(2)/sup n/ to GF(2) the distance Dist(l) measures its distance to a Hadamard code. Err(f) is a parameter that is "easy to measure" and linearity testing studies the relationship of this parameter to the distance of f. The code and corresponding test are used in the construction of efficient probabilistically checkable proofs and thence in the derivation of hardness of approximation. Improved analyses translate into better nonapproximability results. We present a description of the relationship between Err(f) and Dist(f) which is nearly complete in all its aspects, and entirely complete in some. We present functions L,U:[0,1]/spl rarr/[0,1] such that for all x /spl isin/ [0,1] we have L(x)/spl les/Err(f)/spl les/U(x) whenever Dist(f)=x, with the upper bound being tight on the whole range, and the lower bound tight on a large part of the range and close on the rest. Part of our strengthening is obtained by showing a new connection between linearity testing and Fourier analysis.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.556674