Loading…

Study on improved ant colony algorithm of swarm intelligence algorithm

This article first introduces the basic principle and model of ant colony algorithm which is a kind of swarm intelligence algorithm, then analyzes the defect in large-scale optimization problems of basic ant colony algorithm, and concludes with an improved algorithm to improve execution efficiency a...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheng Li, Miao Xianglin, Wang Changying, Hu Zhengping, Wang Dezhong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page V5-641
container_issue
container_start_page V5-639
container_title
container_volume 5
creator Cheng Li
Miao Xianglin
Wang Changying
Hu Zhengping
Wang Dezhong
description This article first introduces the basic principle and model of ant colony algorithm which is a kind of swarm intelligence algorithm, then analyzes the defect in large-scale optimization problems of basic ant colony algorithm, and concludes with an improved algorithm to improve execution efficiency and solution quality in solving large-scale problems.
doi_str_mv 10.1109/ICACTE.2010.5579349
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5579349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5579349</ieee_id><sourcerecordid>5579349</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-118814fea8774f9535663a2591518cea793c4232f20780dfadc2299e447979273</originalsourceid><addsrcrecordid>eNpFkM1qwzAQhNU_aJrmCXLRCzjVz66lPRaTpIVAD_U9CFtKVWwr2G5L3r6Gpu1cBuaDYXcYW0qxklLQw3PxWJTrlRJTgGhIA12wOwkKIEdQ5pLNlETIDAq8-gOazPUvAJK3bDEM72ISoEJjZ2zzOn7UJ546Httjnz59zV038io1qTtx1xxSH8e3lqfAhy_Xtzx2o2-aePBd5f_5PbsJrhn84uxzVm7WZfGU7V620-W7LJIYMymtlRC8s8ZAINSY59opJInSVt5NX1WgtApKGCvq4OpKKSIPYMiQMnrOlj-10Xu_P_axdf1pf55DfwO9O08x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Study on improved ant colony algorithm of swarm intelligence algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng Li ; Miao Xianglin ; Wang Changying ; Hu Zhengping ; Wang Dezhong</creator><creatorcontrib>Cheng Li ; Miao Xianglin ; Wang Changying ; Hu Zhengping ; Wang Dezhong</creatorcontrib><description>This article first introduces the basic principle and model of ant colony algorithm which is a kind of swarm intelligence algorithm, then analyzes the defect in large-scale optimization problems of basic ant colony algorithm, and concludes with an improved algorithm to improve execution efficiency and solution quality in solving large-scale problems.</description><identifier>ISSN: 2154-7491</identifier><identifier>ISBN: 1424465397</identifier><identifier>ISBN: 9781424465392</identifier><identifier>EISSN: 2154-7505</identifier><identifier>EISBN: 1424465427</identifier><identifier>EISBN: 9781424465415</identifier><identifier>EISBN: 9781424465422</identifier><identifier>EISBN: 1424465419</identifier><identifier>DOI: 10.1109/ICACTE.2010.5579349</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; ant colony algorithm ; Computational modeling ; Computers ; Robustness ; routing strategy ; TSP problem</subject><ispartof>2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 2010, Vol.5, p.V5-639-V5-641</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5579349$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5579349$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng Li</creatorcontrib><creatorcontrib>Miao Xianglin</creatorcontrib><creatorcontrib>Wang Changying</creatorcontrib><creatorcontrib>Hu Zhengping</creatorcontrib><creatorcontrib>Wang Dezhong</creatorcontrib><title>Study on improved ant colony algorithm of swarm intelligence algorithm</title><title>2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)</title><addtitle>ICACTE</addtitle><description>This article first introduces the basic principle and model of ant colony algorithm which is a kind of swarm intelligence algorithm, then analyzes the defect in large-scale optimization problems of basic ant colony algorithm, and concludes with an improved algorithm to improve execution efficiency and solution quality in solving large-scale problems.</description><subject>Algorithm design and analysis</subject><subject>ant colony algorithm</subject><subject>Computational modeling</subject><subject>Computers</subject><subject>Robustness</subject><subject>routing strategy</subject><subject>TSP problem</subject><issn>2154-7491</issn><issn>2154-7505</issn><isbn>1424465397</isbn><isbn>9781424465392</isbn><isbn>1424465427</isbn><isbn>9781424465415</isbn><isbn>9781424465422</isbn><isbn>1424465419</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1qwzAQhNU_aJrmCXLRCzjVz66lPRaTpIVAD_U9CFtKVWwr2G5L3r6Gpu1cBuaDYXcYW0qxklLQw3PxWJTrlRJTgGhIA12wOwkKIEdQ5pLNlETIDAq8-gOazPUvAJK3bDEM72ISoEJjZ2zzOn7UJ546Httjnz59zV038io1qTtx1xxSH8e3lqfAhy_Xtzx2o2-aePBd5f_5PbsJrhn84uxzVm7WZfGU7V620-W7LJIYMymtlRC8s8ZAINSY59opJInSVt5NX1WgtApKGCvq4OpKKSIPYMiQMnrOlj-10Xu_P_axdf1pf55DfwO9O08x</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Cheng Li</creator><creator>Miao Xianglin</creator><creator>Wang Changying</creator><creator>Hu Zhengping</creator><creator>Wang Dezhong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Study on improved ant colony algorithm of swarm intelligence algorithm</title><author>Cheng Li ; Miao Xianglin ; Wang Changying ; Hu Zhengping ; Wang Dezhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-118814fea8774f9535663a2591518cea793c4232f20780dfadc2299e447979273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>ant colony algorithm</topic><topic>Computational modeling</topic><topic>Computers</topic><topic>Robustness</topic><topic>routing strategy</topic><topic>TSP problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng Li</creatorcontrib><creatorcontrib>Miao Xianglin</creatorcontrib><creatorcontrib>Wang Changying</creatorcontrib><creatorcontrib>Hu Zhengping</creatorcontrib><creatorcontrib>Wang Dezhong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng Li</au><au>Miao Xianglin</au><au>Wang Changying</au><au>Hu Zhengping</au><au>Wang Dezhong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Study on improved ant colony algorithm of swarm intelligence algorithm</atitle><btitle>2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)</btitle><stitle>ICACTE</stitle><date>2010-08</date><risdate>2010</risdate><volume>5</volume><spage>V5-639</spage><epage>V5-641</epage><pages>V5-639-V5-641</pages><issn>2154-7491</issn><eissn>2154-7505</eissn><isbn>1424465397</isbn><isbn>9781424465392</isbn><eisbn>1424465427</eisbn><eisbn>9781424465415</eisbn><eisbn>9781424465422</eisbn><eisbn>1424465419</eisbn><abstract>This article first introduces the basic principle and model of ant colony algorithm which is a kind of swarm intelligence algorithm, then analyzes the defect in large-scale optimization problems of basic ant colony algorithm, and concludes with an improved algorithm to improve execution efficiency and solution quality in solving large-scale problems.</abstract><pub>IEEE</pub><doi>10.1109/ICACTE.2010.5579349</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2154-7491
ispartof 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 2010, Vol.5, p.V5-639-V5-641
issn 2154-7491
2154-7505
language eng
recordid cdi_ieee_primary_5579349
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
ant colony algorithm
Computational modeling
Computers
Robustness
routing strategy
TSP problem
title Study on improved ant colony algorithm of swarm intelligence algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Study%20on%20improved%20ant%20colony%20algorithm%20of%20swarm%20intelligence%20algorithm&rft.btitle=2010%203rd%20International%20Conference%20on%20Advanced%20Computer%20Theory%20and%20Engineering(ICACTE)&rft.au=Cheng%20Li&rft.date=2010-08&rft.volume=5&rft.spage=V5-639&rft.epage=V5-641&rft.pages=V5-639-V5-641&rft.issn=2154-7491&rft.eissn=2154-7505&rft.isbn=1424465397&rft.isbn_list=9781424465392&rft_id=info:doi/10.1109/ICACTE.2010.5579349&rft.eisbn=1424465427&rft.eisbn_list=9781424465415&rft.eisbn_list=9781424465422&rft.eisbn_list=1424465419&rft_dat=%3Cieee_6IE%3E5579349%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-118814fea8774f9535663a2591518cea793c4232f20780dfadc2299e447979273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5579349&rfr_iscdi=true