Loading…

X-ray image classification using Random Forests with Local Binary Patterns

This paper presents a novel algorithm for the efficient classification of X-ray images to enhance the accuracy and performance. As for describing the characteristics of X-ray image, new Local Binary Patterns (LBP) is employed that allows simple and efficient feature extraction for texture informatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Seong-Hoon Kim, Ji-Hyun Lee, Byoungchul Ko, Jae-Yeal Nam
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3194
container_issue
container_start_page 3190
container_title
container_volume 6
creator Seong-Hoon Kim
Ji-Hyun Lee
Byoungchul Ko
Jae-Yeal Nam
description This paper presents a novel algorithm for the efficient classification of X-ray images to enhance the accuracy and performance. As for describing the characteristics of X-ray image, new Local Binary Patterns (LBP) is employed that allows simple and efficient feature extraction for texture information. To achieve fast and accurate classification task, Random Forests that is decision tree based ensemble classifier is applied. Comparing with other feature descriptors and classifiers, the testing results show that the proposed method improves accuracy, especially the speed for either training or testing.
doi_str_mv 10.1109/ICMLC.2010.5580711
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5580711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580711</ieee_id><sourcerecordid>5580711</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-50a31752ca164fb8e6d611753f1160b8156a7fa4784059846972e6435eb300573</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRI0AiarkB-DiH0jx2l47OUJES1EQCPXQW7VJnWKUJsgOQvl7ItELcxnNHEZPw9gNiAWAyO_WxUtZLKSYMmImLMAZS3KbgZZaG5SI5_-ykRdsJsGIFJTaXrEkxk8xSaOEHGfseZsGGrk_0sHxuqUYfeNrGnzf8e_ouwN_p27fH_myDy4Okf_44YOXfU0tf_AdhZG_0TC40MVrdtlQG11y8jnbLB83xVNavq7WxX2Z-lwMKQpSYFHWBEY3VebM3sBUqAYmyioDNGQb0jbTAvNMm9xKZ7RCVykh0Ko5u_2b9c653VeY0MO4O52hfgGqA07E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>X-ray image classification using Random Forests with Local Binary Patterns</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seong-Hoon Kim ; Ji-Hyun Lee ; Byoungchul Ko ; Jae-Yeal Nam</creator><creatorcontrib>Seong-Hoon Kim ; Ji-Hyun Lee ; Byoungchul Ko ; Jae-Yeal Nam</creatorcontrib><description>This paper presents a novel algorithm for the efficient classification of X-ray images to enhance the accuracy and performance. As for describing the characteristics of X-ray image, new Local Binary Patterns (LBP) is employed that allows simple and efficient feature extraction for texture information. To achieve fast and accurate classification task, Random Forests that is decision tree based ensemble classifier is applied. Comparing with other feature descriptors and classifiers, the testing results show that the proposed method improves accuracy, especially the speed for either training or testing.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 9781424465262</identifier><identifier>ISBN: 1424465265</identifier><identifier>EISBN: 9781424465255</identifier><identifier>EISBN: 1424465273</identifier><identifier>EISBN: 1424465257</identifier><identifier>EISBN: 9781424465279</identifier><identifier>DOI: 10.1109/ICMLC.2010.5580711</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Classification algorithms ; Feature extraction ; Histograms ; Image classification ; Local Binary Patterns ; Random Forests ; Training ; X-ray image classification ; X-ray imaging</subject><ispartof>2010 International Conference on Machine Learning and Cybernetics, 2010, Vol.6, p.3190-3194</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5580711$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seong-Hoon Kim</creatorcontrib><creatorcontrib>Ji-Hyun Lee</creatorcontrib><creatorcontrib>Byoungchul Ko</creatorcontrib><creatorcontrib>Jae-Yeal Nam</creatorcontrib><title>X-ray image classification using Random Forests with Local Binary Patterns</title><title>2010 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>This paper presents a novel algorithm for the efficient classification of X-ray images to enhance the accuracy and performance. As for describing the characteristics of X-ray image, new Local Binary Patterns (LBP) is employed that allows simple and efficient feature extraction for texture information. To achieve fast and accurate classification task, Random Forests that is decision tree based ensemble classifier is applied. Comparing with other feature descriptors and classifiers, the testing results show that the proposed method improves accuracy, especially the speed for either training or testing.</description><subject>Biomedical imaging</subject><subject>Classification algorithms</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Local Binary Patterns</subject><subject>Random Forests</subject><subject>Training</subject><subject>X-ray image classification</subject><subject>X-ray imaging</subject><issn>2160-133X</issn><isbn>9781424465262</isbn><isbn>1424465265</isbn><isbn>9781424465255</isbn><isbn>1424465273</isbn><isbn>1424465257</isbn><isbn>9781424465279</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMFOwzAQRI0AiarkB-DiH0jx2l47OUJES1EQCPXQW7VJnWKUJsgOQvl7ItELcxnNHEZPw9gNiAWAyO_WxUtZLKSYMmImLMAZS3KbgZZaG5SI5_-ykRdsJsGIFJTaXrEkxk8xSaOEHGfseZsGGrk_0sHxuqUYfeNrGnzf8e_ouwN_p27fH_myDy4Okf_44YOXfU0tf_AdhZG_0TC40MVrdtlQG11y8jnbLB83xVNavq7WxX2Z-lwMKQpSYFHWBEY3VebM3sBUqAYmyioDNGQb0jbTAvNMm9xKZ7RCVykh0Ko5u_2b9c653VeY0MO4O52hfgGqA07E</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Seong-Hoon Kim</creator><creator>Ji-Hyun Lee</creator><creator>Byoungchul Ko</creator><creator>Jae-Yeal Nam</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>X-ray image classification using Random Forests with Local Binary Patterns</title><author>Seong-Hoon Kim ; Ji-Hyun Lee ; Byoungchul Ko ; Jae-Yeal Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-50a31752ca164fb8e6d611753f1160b8156a7fa4784059846972e6435eb300573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomedical imaging</topic><topic>Classification algorithms</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Local Binary Patterns</topic><topic>Random Forests</topic><topic>Training</topic><topic>X-ray image classification</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Seong-Hoon Kim</creatorcontrib><creatorcontrib>Ji-Hyun Lee</creatorcontrib><creatorcontrib>Byoungchul Ko</creatorcontrib><creatorcontrib>Jae-Yeal Nam</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seong-Hoon Kim</au><au>Ji-Hyun Lee</au><au>Byoungchul Ko</au><au>Jae-Yeal Nam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>X-ray image classification using Random Forests with Local Binary Patterns</atitle><btitle>2010 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2010-07</date><risdate>2010</risdate><volume>6</volume><spage>3190</spage><epage>3194</epage><pages>3190-3194</pages><issn>2160-133X</issn><isbn>9781424465262</isbn><isbn>1424465265</isbn><eisbn>9781424465255</eisbn><eisbn>1424465273</eisbn><eisbn>1424465257</eisbn><eisbn>9781424465279</eisbn><abstract>This paper presents a novel algorithm for the efficient classification of X-ray images to enhance the accuracy and performance. As for describing the characteristics of X-ray image, new Local Binary Patterns (LBP) is employed that allows simple and efficient feature extraction for texture information. To achieve fast and accurate classification task, Random Forests that is decision tree based ensemble classifier is applied. Comparing with other feature descriptors and classifiers, the testing results show that the proposed method improves accuracy, especially the speed for either training or testing.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2010.5580711</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2010 International Conference on Machine Learning and Cybernetics, 2010, Vol.6, p.3190-3194
issn 2160-133X
language eng
recordid cdi_ieee_primary_5580711
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Classification algorithms
Feature extraction
Histograms
Image classification
Local Binary Patterns
Random Forests
Training
X-ray image classification
X-ray imaging
title X-ray image classification using Random Forests with Local Binary Patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=X-ray%20image%20classification%20using%20Random%20Forests%20with%20Local%20Binary%20Patterns&rft.btitle=2010%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Seong-Hoon%20Kim&rft.date=2010-07&rft.volume=6&rft.spage=3190&rft.epage=3194&rft.pages=3190-3194&rft.issn=2160-133X&rft.isbn=9781424465262&rft.isbn_list=1424465265&rft_id=info:doi/10.1109/ICMLC.2010.5580711&rft.eisbn=9781424465255&rft.eisbn_list=1424465273&rft.eisbn_list=1424465257&rft.eisbn_list=9781424465279&rft_dat=%3Cieee_6IE%3E5580711%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-50a31752ca164fb8e6d611753f1160b8156a7fa4784059846972e6435eb300573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5580711&rfr_iscdi=true