Loading…
Functionalization of microarray devices: Process optimization using a multiobjective PSO and multiresponse MARS modeling
An evolutionary approach for the optimization of microarray coatings produced via sol-gel chemistry is presented. The aim of the methodology is to face the challenging aspects of the problem: unknown objective function, high dimensional variable space, constraints on the independent variables, multi...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An evolutionary approach for the optimization of microarray coatings produced via sol-gel chemistry is presented. The aim of the methodology is to face the challenging aspects of the problem: unknown objective function, high dimensional variable space, constraints on the independent variables, multiple responses, expensive or time-consuming experimental trials, expected complexity of the functional relationships between independent and response variables. The proposed approach iteratively selects a set of experiments by combining a multiob-jective Particle Swarm Optimization (PSO) and a multiresponse Multivariate Adaptive Regression Splines (MARS) model. At each iteration of the algorithm the selected experiments are implemented and evaluated, and the system response is used as a feedback for the selection of the new trials. The performance of the approach is measured in terms of improvements with respect to the best coating obtained changing one variable at a time (the method typically used by scientists). Relevant enhancements have been detected, and the proposed evolutionary approach is shown to be a useful methodology for process optimization with great promise for industrial applications. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/CEC.2010.5586165 |