Loading…

Computational discovery of regulatory DNA motifs using evolutionary computation

Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous st...

Full description

Saved in:
Bibliographic Details
Main Authors: Xi Li, Dianhui Wang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Xi Li
Dianhui Wang
description Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets.
doi_str_mv 10.1109/CEC.2010.5586380
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5586380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5586380</ieee_id><sourcerecordid>5586380</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-293a3e9d6b27369b4e1afd1d5f557159380686d6c430af24c436adc561aa1a703</originalsourceid><addsrcrecordid>eNpFkEtrwzAQhNUXNEl7L_SiP-B0Vy9bx-CmDwjNJYfegmJJQcWOQmQH-u8r0tCehuFjh5kl5AFhigj6qZ7XUwbZSVkpXsEFGaNgQiiNIC7JCLXAAoCpqz8AGq4zgEoXZVl93pJxSl8AKCTqEVnWsdsPvelD3JmW2pCaeHSHbxo9Pbjt0Jo-Zvf8MaNd7INPdEhht6XuGNvhdJRp859xR268aZO7P-uErF7mq_qtWCxf3-vZogga-oJpbrjTVm1YyZXeCIfGW7TSS1mi1HmZqpRVjeBgPBNZlbGNVGgMmhL4hDz-xgbn3Hp_CF3usT4_hf8AGcVSuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational discovery of regulatory DNA motifs using evolutionary computation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xi Li ; Dianhui Wang</creator><creatorcontrib>Xi Li ; Dianhui Wang</creatorcontrib><description>Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424469090</identifier><identifier>ISBN: 9781424469093</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424469104</identifier><identifier>EISBN: 9781424469109</identifier><identifier>EISBN: 1424469112</identifier><identifier>EISBN: 9781424469116</identifier><identifier>DOI: 10.1109/CEC.2010.5586380</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Computational modeling ; DNA ; Evolutionary computation ; Integrated circuits ; Markov processes ; Measurement</subject><ispartof>IEEE Congress on Evolutionary Computation, 2010, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5586380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5586380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xi Li</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><title>Computational discovery of regulatory DNA motifs using evolutionary computation</title><title>IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets.</description><subject>Biological cells</subject><subject>Computational modeling</subject><subject>DNA</subject><subject>Evolutionary computation</subject><subject>Integrated circuits</subject><subject>Markov processes</subject><subject>Measurement</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424469090</isbn><isbn>9781424469093</isbn><isbn>1424469104</isbn><isbn>9781424469109</isbn><isbn>1424469112</isbn><isbn>9781424469116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtrwzAQhNUXNEl7L_SiP-B0Vy9bx-CmDwjNJYfegmJJQcWOQmQH-u8r0tCehuFjh5kl5AFhigj6qZ7XUwbZSVkpXsEFGaNgQiiNIC7JCLXAAoCpqz8AGq4zgEoXZVl93pJxSl8AKCTqEVnWsdsPvelD3JmW2pCaeHSHbxo9Pbjt0Jo-Zvf8MaNd7INPdEhht6XuGNvhdJRp859xR268aZO7P-uErF7mq_qtWCxf3-vZogga-oJpbrjTVm1YyZXeCIfGW7TSS1mi1HmZqpRVjeBgPBNZlbGNVGgMmhL4hDz-xgbn3Hp_CF3usT4_hf8AGcVSuQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Xi Li</creator><creator>Dianhui Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Computational discovery of regulatory DNA motifs using evolutionary computation</title><author>Xi Li ; Dianhui Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-293a3e9d6b27369b4e1afd1d5f557159380686d6c430af24c436adc561aa1a703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological cells</topic><topic>Computational modeling</topic><topic>DNA</topic><topic>Evolutionary computation</topic><topic>Integrated circuits</topic><topic>Markov processes</topic><topic>Measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi Li</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xi Li</au><au>Dianhui Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational discovery of regulatory DNA motifs using evolutionary computation</atitle><btitle>IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424469090</isbn><isbn>9781424469093</isbn><eisbn>1424469104</eisbn><eisbn>9781424469109</eisbn><eisbn>1424469112</eisbn><eisbn>9781424469116</eisbn><abstract>Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2010.5586380</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE Congress on Evolutionary Computation, 2010, p.1-8
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_5586380
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Computational modeling
DNA
Evolutionary computation
Integrated circuits
Markov processes
Measurement
title Computational discovery of regulatory DNA motifs using evolutionary computation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20discovery%20of%20regulatory%20DNA%20motifs%20using%20evolutionary%20computation&rft.btitle=IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Xi%20Li&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424469090&rft.isbn_list=9781424469093&rft_id=info:doi/10.1109/CEC.2010.5586380&rft.eisbn=1424469104&rft.eisbn_list=9781424469109&rft.eisbn_list=1424469112&rft.eisbn_list=9781424469116&rft_dat=%3Cieee_6IE%3E5586380%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-293a3e9d6b27369b4e1afd1d5f557159380686d6c430af24c436adc561aa1a703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5586380&rfr_iscdi=true