Loading…
Computational discovery of regulatory DNA motifs using evolutionary computation
Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous st...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xi Li Dianhui Wang |
description | Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets. |
doi_str_mv | 10.1109/CEC.2010.5586380 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5586380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5586380</ieee_id><sourcerecordid>5586380</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-293a3e9d6b27369b4e1afd1d5f557159380686d6c430af24c436adc561aa1a703</originalsourceid><addsrcrecordid>eNpFkEtrwzAQhNUXNEl7L_SiP-B0Vy9bx-CmDwjNJYfegmJJQcWOQmQH-u8r0tCehuFjh5kl5AFhigj6qZ7XUwbZSVkpXsEFGaNgQiiNIC7JCLXAAoCpqz8AGq4zgEoXZVl93pJxSl8AKCTqEVnWsdsPvelD3JmW2pCaeHSHbxo9Pbjt0Jo-Zvf8MaNd7INPdEhht6XuGNvhdJRp859xR268aZO7P-uErF7mq_qtWCxf3-vZogga-oJpbrjTVm1YyZXeCIfGW7TSS1mi1HmZqpRVjeBgPBNZlbGNVGgMmhL4hDz-xgbn3Hp_CF3usT4_hf8AGcVSuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational discovery of regulatory DNA motifs using evolutionary computation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xi Li ; Dianhui Wang</creator><creatorcontrib>Xi Li ; Dianhui Wang</creatorcontrib><description>Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424469090</identifier><identifier>ISBN: 9781424469093</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424469104</identifier><identifier>EISBN: 9781424469109</identifier><identifier>EISBN: 1424469112</identifier><identifier>EISBN: 9781424469116</identifier><identifier>DOI: 10.1109/CEC.2010.5586380</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Computational modeling ; DNA ; Evolutionary computation ; Integrated circuits ; Markov processes ; Measurement</subject><ispartof>IEEE Congress on Evolutionary Computation, 2010, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5586380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5586380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xi Li</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><title>Computational discovery of regulatory DNA motifs using evolutionary computation</title><title>IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets.</description><subject>Biological cells</subject><subject>Computational modeling</subject><subject>DNA</subject><subject>Evolutionary computation</subject><subject>Integrated circuits</subject><subject>Markov processes</subject><subject>Measurement</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424469090</isbn><isbn>9781424469093</isbn><isbn>1424469104</isbn><isbn>9781424469109</isbn><isbn>1424469112</isbn><isbn>9781424469116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtrwzAQhNUXNEl7L_SiP-B0Vy9bx-CmDwjNJYfegmJJQcWOQmQH-u8r0tCehuFjh5kl5AFhigj6qZ7XUwbZSVkpXsEFGaNgQiiNIC7JCLXAAoCpqz8AGq4zgEoXZVl93pJxSl8AKCTqEVnWsdsPvelD3JmW2pCaeHSHbxo9Pbjt0Jo-Zvf8MaNd7INPdEhht6XuGNvhdJRp859xR268aZO7P-uErF7mq_qtWCxf3-vZogga-oJpbrjTVm1YyZXeCIfGW7TSS1mi1HmZqpRVjeBgPBNZlbGNVGgMmhL4hDz-xgbn3Hp_CF3usT4_hf8AGcVSuQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Xi Li</creator><creator>Dianhui Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Computational discovery of regulatory DNA motifs using evolutionary computation</title><author>Xi Li ; Dianhui Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-293a3e9d6b27369b4e1afd1d5f557159380686d6c430af24c436adc561aa1a703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological cells</topic><topic>Computational modeling</topic><topic>DNA</topic><topic>Evolutionary computation</topic><topic>Integrated circuits</topic><topic>Markov processes</topic><topic>Measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi Li</creatorcontrib><creatorcontrib>Dianhui Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xi Li</au><au>Dianhui Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational discovery of regulatory DNA motifs using evolutionary computation</atitle><btitle>IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424469090</isbn><isbn>9781424469093</isbn><eisbn>1424469104</eisbn><eisbn>9781424469109</eisbn><eisbn>1424469112</eisbn><eisbn>9781424469116</eisbn><abstract>Computational discovery of DNA motifs is one of the major challenges in bioinformatics, which helps in understanding the mechanism of gene regulation. It has been reported that computational approaches have good potential for problem solving in terms of cost and time saving. Based on our previous studies, this paper aims to develop an evolutionary computation scheme to provide an alternative approach for motif discovery. To work on the framework of our previously developed GAPK, a small sized collection of k-mers is extracted and utilized as "prior knowledge" in algorithm development. Our technical contributions in this paper mainly include a novel fitness function carrying information on conservation and rareness of DNA motifs, and a path to access GAPK-like solutions using seed concept and filtering techniques. The proposed algorithm in this paper has been evaluated by using eight benchmarked datasets, with comparisons to well-known tools such as MEME, MDScan, AlignACE and two GA-based techniques. Results show that our proposed method favorably outperforms other algorithms for these testing datasets.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2010.5586380</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE Congress on Evolutionary Computation, 2010, p.1-8 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_5586380 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Computational modeling DNA Evolutionary computation Integrated circuits Markov processes Measurement |
title | Computational discovery of regulatory DNA motifs using evolutionary computation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20discovery%20of%20regulatory%20DNA%20motifs%20using%20evolutionary%20computation&rft.btitle=IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Xi%20Li&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424469090&rft.isbn_list=9781424469093&rft_id=info:doi/10.1109/CEC.2010.5586380&rft.eisbn=1424469104&rft.eisbn_list=9781424469109&rft.eisbn_list=1424469112&rft.eisbn_list=9781424469116&rft_dat=%3Cieee_6IE%3E5586380%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-293a3e9d6b27369b4e1afd1d5f557159380686d6c430af24c436adc561aa1a703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5586380&rfr_iscdi=true |