Loading…
A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach
In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 263 |
container_issue | |
container_start_page | 258 |
container_title | |
container_volume | |
creator | Tlig, Lotfi Sayadi, Mounir Fnaeich, Farhat |
description | In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures. |
doi_str_mv | 10.1109/IPTA.2010.5586746 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5586746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5586746</ieee_id><sourcerecordid>5586746</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-123381ad7e38a834609e0bd49713ebd62074e5e997ed4eb34242ae8a576d17633</originalsourceid><addsrcrecordid>eNo9kN1KAzEQheMfWOs-gHiTF9ia_2wuS7FaKOhFL8Sbkm1m10i7uyQp2j69AasHhjnDB8PMQeiOkgmlxDwsXlfTCSN5lLJSWqgzVBhdUcGE0EwYc45GjEpRSsreLtDNH9Di8h9Qeo2KGD9JlpBMSTJC71PcwRd2EDfBD6kPuMmV4DvtAzjsd7YFHKHdQZds8n2HaxszyKbZH48HnA4DlAxvtvuYIPiuxXYYQm83H7foqrHbCMWpj9Fq_riaPZfLl6fFbLosvSGppIzzilqngVe24kIRA6R2wmjKoXaKES1AgjEanICa57-YhcpKrRzVivMxuv9d6wFgPYR8cjisTynxH5R5Vzo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach</title><source>IEEE Xplore All Conference Series</source><creator>Tlig, Lotfi ; Sayadi, Mounir ; Fnaeich, Farhat</creator><creatorcontrib>Tlig, Lotfi ; Sayadi, Mounir ; Fnaeich, Farhat</creatorcontrib><description>In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures.</description><identifier>ISSN: 2154-5111</identifier><identifier>ISBN: 1424472474</identifier><identifier>ISBN: 9781424472475</identifier><identifier>EISSN: 2154-512X</identifier><identifier>EISBN: 9781424472499</identifier><identifier>EISBN: 9781424472482</identifier><identifier>EISBN: 1424472482</identifier><identifier>EISBN: 1424472490</identifier><identifier>DOI: 10.1109/IPTA.2010.5586746</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clustering algorithms ; Feature extraction ; Frequency modulation ; Fuzzy clustering ; Gabor filtering ; Image segmentation ; Local binary pattern ; Partitioning algorithms ; Pixel</subject><ispartof>2010 2nd International Conference on Image Processing Theory, Tools and Applications, 2010, p.258-263</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5586746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5586746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tlig, Lotfi</creatorcontrib><creatorcontrib>Sayadi, Mounir</creatorcontrib><creatorcontrib>Fnaeich, Farhat</creatorcontrib><title>A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach</title><title>2010 2nd International Conference on Image Processing Theory, Tools and Applications</title><addtitle>IPTA</addtitle><description>In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures.</description><subject>Accuracy</subject><subject>Clustering algorithms</subject><subject>Feature extraction</subject><subject>Frequency modulation</subject><subject>Fuzzy clustering</subject><subject>Gabor filtering</subject><subject>Image segmentation</subject><subject>Local binary pattern</subject><subject>Partitioning algorithms</subject><subject>Pixel</subject><issn>2154-5111</issn><issn>2154-512X</issn><isbn>1424472474</isbn><isbn>9781424472475</isbn><isbn>9781424472499</isbn><isbn>9781424472482</isbn><isbn>1424472482</isbn><isbn>1424472490</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1KAzEQheMfWOs-gHiTF9ia_2wuS7FaKOhFL8Sbkm1m10i7uyQp2j69AasHhjnDB8PMQeiOkgmlxDwsXlfTCSN5lLJSWqgzVBhdUcGE0EwYc45GjEpRSsreLtDNH9Di8h9Qeo2KGD9JlpBMSTJC71PcwRd2EDfBD6kPuMmV4DvtAzjsd7YFHKHdQZds8n2HaxszyKbZH48HnA4DlAxvtvuYIPiuxXYYQm83H7foqrHbCMWpj9Fq_riaPZfLl6fFbLosvSGppIzzilqngVe24kIRA6R2wmjKoXaKES1AgjEanICa57-YhcpKrRzVivMxuv9d6wFgPYR8cjisTynxH5R5Vzo</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Tlig, Lotfi</creator><creator>Sayadi, Mounir</creator><creator>Fnaeich, Farhat</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach</title><author>Tlig, Lotfi ; Sayadi, Mounir ; Fnaeich, Farhat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-123381ad7e38a834609e0bd49713ebd62074e5e997ed4eb34242ae8a576d17633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Clustering algorithms</topic><topic>Feature extraction</topic><topic>Frequency modulation</topic><topic>Fuzzy clustering</topic><topic>Gabor filtering</topic><topic>Image segmentation</topic><topic>Local binary pattern</topic><topic>Partitioning algorithms</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Tlig, Lotfi</creatorcontrib><creatorcontrib>Sayadi, Mounir</creatorcontrib><creatorcontrib>Fnaeich, Farhat</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tlig, Lotfi</au><au>Sayadi, Mounir</au><au>Fnaeich, Farhat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach</atitle><btitle>2010 2nd International Conference on Image Processing Theory, Tools and Applications</btitle><stitle>IPTA</stitle><date>2010-07</date><risdate>2010</risdate><spage>258</spage><epage>263</epage><pages>258-263</pages><issn>2154-5111</issn><eissn>2154-512X</eissn><isbn>1424472474</isbn><isbn>9781424472475</isbn><eisbn>9781424472499</eisbn><eisbn>9781424472482</eisbn><eisbn>1424472482</eisbn><eisbn>1424472490</eisbn><abstract>In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures.</abstract><pub>IEEE</pub><doi>10.1109/IPTA.2010.5586746</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2154-5111 |
ispartof | 2010 2nd International Conference on Image Processing Theory, Tools and Applications, 2010, p.258-263 |
issn | 2154-5111 2154-512X |
language | eng |
recordid | cdi_ieee_primary_5586746 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Clustering algorithms Feature extraction Frequency modulation Fuzzy clustering Gabor filtering Image segmentation Local binary pattern Partitioning algorithms Pixel |
title | A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20descriptor%20for%20textured%20image%20segmentation%20based%20on%20fuzzy%20type-2%20clustering%20approach&rft.btitle=2010%202nd%20International%20Conference%20on%20Image%20Processing%20Theory,%20Tools%20and%20Applications&rft.au=Tlig,%20Lotfi&rft.date=2010-07&rft.spage=258&rft.epage=263&rft.pages=258-263&rft.issn=2154-5111&rft.eissn=2154-512X&rft.isbn=1424472474&rft.isbn_list=9781424472475&rft_id=info:doi/10.1109/IPTA.2010.5586746&rft.eisbn=9781424472499&rft.eisbn_list=9781424472482&rft.eisbn_list=1424472482&rft.eisbn_list=1424472490&rft_dat=%3Cieee_CHZPO%3E5586746%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-123381ad7e38a834609e0bd49713ebd62074e5e997ed4eb34242ae8a576d17633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5586746&rfr_iscdi=true |