Loading…
A Low-Power Fast-Transient 90-nm Low-Dropout Regulator With Multiple Small-Gain Stages
A power-efficient 90-nm low-dropout regulator (LDO) with multiple small-gain stages is proposed in this paper. The proposed channel-resistance-insensitive small-gain stages provide loop gain enhancements without introducing low-frequency poles before the unity-gain frequency (UGF). As a result, both...
Saved in:
Published in: | IEEE journal of solid-state circuits 2010-11, Vol.45 (11), p.2466-2475 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A power-efficient 90-nm low-dropout regulator (LDO) with multiple small-gain stages is proposed in this paper. The proposed channel-resistance-insensitive small-gain stages provide loop gain enhancements without introducing low-frequency poles before the unity-gain frequency (UGF). As a result, both the loop gain and bandwidth of the LDO are improved, so that the accuracy and response speed of voltage regulation are significantly enhanced. As no on-chip compensation capacitor is required, the active chip area of the LDO is only 72.5 μm × 37.8 μm. Experimental results show that the LDO is capable of providing an output of 0.9 V with maximum output current of 50 mA from a 1-V supply. The LDO has a quiescent current of 9.3 μA, and has significantly improvement in line and load transient responses as well as performance in power-supply rejection ratio (PSRR). |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2010.2072611 |