Loading…

A Unifying Framework for Learning the Linear Combiners for Classifier Ensembles

For classifier ensembles, an effective combination method is to combine the outputs of each classifier using a linearly weighted combination rule. There are multiple ways to linearly combine classifier outputs and it is beneficial to analyze them as a whole. We present a unifying framework for multi...

Full description

Saved in:
Bibliographic Details
Main Authors: Erdogan, H, Sen, M U
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2988
container_issue
container_start_page 2985
container_title
container_volume
creator Erdogan, H
Sen, M U
description For classifier ensembles, an effective combination method is to combine the outputs of each classifier using a linearly weighted combination rule. There are multiple ways to linearly combine classifier outputs and it is beneficial to analyze them as a whole. We present a unifying framework for multiple linear combination types in this paper. This unification enables using the same learning algorithms for different types of linear combiners. We present various ways to train the weights using regularized empirical loss minimization. We propose using the hinge loss for better performance as compared to the conventional least-squares loss. We analyze the effects of using hinge loss for various types of linear weight training by running experiments on three different databases. We show that, in certain problems, linear combiners with fewer parameters may perform as well as the ones with much larger number of parameters even in the presence of regularization.
doi_str_mv 10.1109/ICPR.2010.731
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5595979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5595979</ieee_id><sourcerecordid>5595979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5d997744986e70cd44257a53ad2e972ded6adbbc6f66a97bce9cdd8f29125ea53</originalsourceid><addsrcrecordid>eNo1jEtPwzAQhM1LopQeOXHxHwjYjtebPVZRC5UiFaFyrpx4AxZNipxKqP-e8DrNfDOjEeJGqzutFd2vyqfnO6NGxFyfiBlhoa2xFsFqeyompsh1hiOeiav_wphzMdEKdGYd6EsxG4ZYK-PQIQBMxHouX_rYHmP_KpfJd_y5T--y3SdZsU_9d3x4Y1nFfkRZ7rt6dGn4WZQ7P761kZNc9AN39Y6Ha3HR-t3Asz-dis1ysSkfs2r9sCrnVRZJHTIIRIjWUuEYVROsNYAech8ME5rAwflQ141rnfOEdcPUhFC0hrQBHodTcft7G5l5-5Fi59NxC0BASPkXGNtTEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Unifying Framework for Learning the Linear Combiners for Classifier Ensembles</title><source>IEEE Xplore All Conference Series</source><creator>Erdogan, H ; Sen, M U</creator><creatorcontrib>Erdogan, H ; Sen, M U</creatorcontrib><description>For classifier ensembles, an effective combination method is to combine the outputs of each classifier using a linearly weighted combination rule. There are multiple ways to linearly combine classifier outputs and it is beneficial to analyze them as a whole. We present a unifying framework for multiple linear combination types in this paper. This unification enables using the same learning algorithms for different types of linear combiners. We present various ways to train the weights using regularized empirical loss minimization. We propose using the hinge loss for better performance as compared to the conventional least-squares loss. We analyze the effects of using hinge loss for various types of linear weight training by running experiments on three different databases. We show that, in certain problems, linear combiners with fewer parameters may perform as well as the ones with much larger number of parameters even in the presence of regularization.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.731</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; classifier fusion ; Fasteners ; linear classifier learning ; linear combiners ; Minimization ; stacked generalization ; Training ; Training data ; Vectors</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2985-2988</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5595979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5595979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erdogan, H</creatorcontrib><creatorcontrib>Sen, M U</creatorcontrib><title>A Unifying Framework for Learning the Linear Combiners for Classifier Ensembles</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>For classifier ensembles, an effective combination method is to combine the outputs of each classifier using a linearly weighted combination rule. There are multiple ways to linearly combine classifier outputs and it is beneficial to analyze them as a whole. We present a unifying framework for multiple linear combination types in this paper. This unification enables using the same learning algorithms for different types of linear combiners. We present various ways to train the weights using regularized empirical loss minimization. We propose using the hinge loss for better performance as compared to the conventional least-squares loss. We analyze the effects of using hinge loss for various types of linear weight training by running experiments on three different databases. We show that, in certain problems, linear combiners with fewer parameters may perform as well as the ones with much larger number of parameters even in the presence of regularization.</description><subject>Accuracy</subject><subject>classifier fusion</subject><subject>Fasteners</subject><subject>linear classifier learning</subject><subject>linear combiners</subject><subject>Minimization</subject><subject>stacked generalization</subject><subject>Training</subject><subject>Training data</subject><subject>Vectors</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jEtPwzAQhM1LopQeOXHxHwjYjtebPVZRC5UiFaFyrpx4AxZNipxKqP-e8DrNfDOjEeJGqzutFd2vyqfnO6NGxFyfiBlhoa2xFsFqeyompsh1hiOeiav_wphzMdEKdGYd6EsxG4ZYK-PQIQBMxHouX_rYHmP_KpfJd_y5T--y3SdZsU_9d3x4Y1nFfkRZ7rt6dGn4WZQ7P761kZNc9AN39Y6Ha3HR-t3Asz-dis1ysSkfs2r9sCrnVRZJHTIIRIjWUuEYVROsNYAech8ME5rAwflQ141rnfOEdcPUhFC0hrQBHodTcft7G5l5-5Fi59NxC0BASPkXGNtTEQ</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Erdogan, H</creator><creator>Sen, M U</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>A Unifying Framework for Learning the Linear Combiners for Classifier Ensembles</title><author>Erdogan, H ; Sen, M U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5d997744986e70cd44257a53ad2e972ded6adbbc6f66a97bce9cdd8f29125ea53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>classifier fusion</topic><topic>Fasteners</topic><topic>linear classifier learning</topic><topic>linear combiners</topic><topic>Minimization</topic><topic>stacked generalization</topic><topic>Training</topic><topic>Training data</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Erdogan, H</creatorcontrib><creatorcontrib>Sen, M U</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erdogan, H</au><au>Sen, M U</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Unifying Framework for Learning the Linear Combiners for Classifier Ensembles</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2985</spage><epage>2988</epage><pages>2985-2988</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>For classifier ensembles, an effective combination method is to combine the outputs of each classifier using a linearly weighted combination rule. There are multiple ways to linearly combine classifier outputs and it is beneficial to analyze them as a whole. We present a unifying framework for multiple linear combination types in this paper. This unification enables using the same learning algorithms for different types of linear combiners. We present various ways to train the weights using regularized empirical loss minimization. We propose using the hinge loss for better performance as compared to the conventional least-squares loss. We analyze the effects of using hinge loss for various types of linear weight training by running experiments on three different databases. We show that, in certain problems, linear combiners with fewer parameters may perform as well as the ones with much larger number of parameters even in the presence of regularization.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.731</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.2985-2988
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5595979
source IEEE Xplore All Conference Series
subjects Accuracy
classifier fusion
Fasteners
linear classifier learning
linear combiners
Minimization
stacked generalization
Training
Training data
Vectors
title A Unifying Framework for Learning the Linear Combiners for Classifier Ensembles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Unifying%20Framework%20for%20Learning%20the%20Linear%20Combiners%20for%20Classifier%20Ensembles&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Erdogan,%20H&rft.date=2010-08&rft.spage=2985&rft.epage=2988&rft.pages=2985-2988&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.731&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_CHZPO%3E5595979%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5d997744986e70cd44257a53ad2e972ded6adbbc6f66a97bce9cdd8f29125ea53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5595979&rfr_iscdi=true