Loading…

Robust Shape from Polarisation and Shading

In this paper, we present an approach to robust estimation of shape from single-view multi-spectral polarisation images. The developed technique tackles the problem of recovering the azimuth angle of surface normals robust to image noise and a low degree of polarisation. We note that the linear leas...

Full description

Saved in:
Bibliographic Details
Main Authors: Cong Phuoc Huynh, Robles-Kelly, Antonio, Hancock, Edwin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 813
container_issue
container_start_page 810
container_title
container_volume
creator Cong Phuoc Huynh
Robles-Kelly, Antonio
Hancock, Edwin
description In this paper, we present an approach to robust estimation of shape from single-view multi-spectral polarisation images. The developed technique tackles the problem of recovering the azimuth angle of surface normals robust to image noise and a low degree of polarisation. We note that the linear least-squares estimation results in a considerable phase shift from the ground truth in the presence of noise and weak polarisation in multispectral and hyper spectral imaging. This paper discusses the utility of robust statistics to discount the large error attributed to outliers and noise. Combining this approach with Shape from Shading, we fully recover the surface shape. We demonstrate the effectiveness of the robust estimator compared to the linear least-squares estimator through shape recovery experiments on both synthetic and real images.
doi_str_mv 10.1109/ICPR.2010.204
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5596052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5596052</ieee_id><sourcerecordid>5596052</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1294-393149d8e0219a205433c52d297f7bc06262db2ad23dd9eb0049d3e00191e64f3</originalsourceid><addsrcrecordid>eNo1jEtLw0AURq8vMNYsXbnJWki9987cmcxSio9CwVJ1XSadiQ60SUnqwn9vRF19HM7hA7ginBKhu53Plqsp44iM-ghyZyvSrLUVTfoYMq4UlXbEE7j4F8ynkBEKldoInUM-DKlGNtZYEcngZtXVn8OhePnw-1g0fbcrlt3W92nwh9S1hW_Djwupfb-Es8Zvh5j_7QTeHu5fZ0_l4vlxPrtblInY6VI5RdqFKiKT84yildoIB3a2sfUGDRsONfvAKgQXa8SxVhGRHEWjGzWB69_fFGNc7_u08_3XWsQZFFbfLOxD1A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Shape from Polarisation and Shading</title><source>IEEE Xplore All Conference Series</source><creator>Cong Phuoc Huynh ; Robles-Kelly, Antonio ; Hancock, Edwin</creator><creatorcontrib>Cong Phuoc Huynh ; Robles-Kelly, Antonio ; Hancock, Edwin</creatorcontrib><description>In this paper, we present an approach to robust estimation of shape from single-view multi-spectral polarisation images. The developed technique tackles the problem of recovering the azimuth angle of surface normals robust to image noise and a low degree of polarisation. We note that the linear least-squares estimation results in a considerable phase shift from the ground truth in the presence of noise and weak polarisation in multispectral and hyper spectral imaging. This paper discusses the utility of robust statistics to discount the large error attributed to outliers and noise. Combining this approach with Shape from Shading, we fully recover the surface shape. We demonstrate the effectiveness of the robust estimator compared to the linear least-squares estimator through shape recovery experiments on both synthetic and real images.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.204</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D Shape Recovery ; Azimuth ; Equations ; Hyperspectral Imagery ; Multispectral Imagery ; Noise ; Pixel ; Polarisation ; Robust Statistics ; Robustness ; Shape ; Shape from Shading ; Shape from X ; Surface treatment</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.810-813</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5596052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5596052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cong Phuoc Huynh</creatorcontrib><creatorcontrib>Robles-Kelly, Antonio</creatorcontrib><creatorcontrib>Hancock, Edwin</creatorcontrib><title>Robust Shape from Polarisation and Shading</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>In this paper, we present an approach to robust estimation of shape from single-view multi-spectral polarisation images. The developed technique tackles the problem of recovering the azimuth angle of surface normals robust to image noise and a low degree of polarisation. We note that the linear least-squares estimation results in a considerable phase shift from the ground truth in the presence of noise and weak polarisation in multispectral and hyper spectral imaging. This paper discusses the utility of robust statistics to discount the large error attributed to outliers and noise. Combining this approach with Shape from Shading, we fully recover the surface shape. We demonstrate the effectiveness of the robust estimator compared to the linear least-squares estimator through shape recovery experiments on both synthetic and real images.</description><subject>3D Shape Recovery</subject><subject>Azimuth</subject><subject>Equations</subject><subject>Hyperspectral Imagery</subject><subject>Multispectral Imagery</subject><subject>Noise</subject><subject>Pixel</subject><subject>Polarisation</subject><subject>Robust Statistics</subject><subject>Robustness</subject><subject>Shape</subject><subject>Shape from Shading</subject><subject>Shape from X</subject><subject>Surface treatment</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jEtLw0AURq8vMNYsXbnJWki9987cmcxSio9CwVJ1XSadiQ60SUnqwn9vRF19HM7hA7ginBKhu53Plqsp44iM-ghyZyvSrLUVTfoYMq4UlXbEE7j4F8ynkBEKldoInUM-DKlGNtZYEcngZtXVn8OhePnw-1g0fbcrlt3W92nwh9S1hW_Djwupfb-Es8Zvh5j_7QTeHu5fZ0_l4vlxPrtblInY6VI5RdqFKiKT84yildoIB3a2sfUGDRsONfvAKgQXa8SxVhGRHEWjGzWB69_fFGNc7_u08_3XWsQZFFbfLOxD1A</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Cong Phuoc Huynh</creator><creator>Robles-Kelly, Antonio</creator><creator>Hancock, Edwin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Robust Shape from Polarisation and Shading</title><author>Cong Phuoc Huynh ; Robles-Kelly, Antonio ; Hancock, Edwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1294-393149d8e0219a205433c52d297f7bc06262db2ad23dd9eb0049d3e00191e64f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D Shape Recovery</topic><topic>Azimuth</topic><topic>Equations</topic><topic>Hyperspectral Imagery</topic><topic>Multispectral Imagery</topic><topic>Noise</topic><topic>Pixel</topic><topic>Polarisation</topic><topic>Robust Statistics</topic><topic>Robustness</topic><topic>Shape</topic><topic>Shape from Shading</topic><topic>Shape from X</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Cong Phuoc Huynh</creatorcontrib><creatorcontrib>Robles-Kelly, Antonio</creatorcontrib><creatorcontrib>Hancock, Edwin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cong Phuoc Huynh</au><au>Robles-Kelly, Antonio</au><au>Hancock, Edwin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Shape from Polarisation and Shading</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>810</spage><epage>813</epage><pages>810-813</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>In this paper, we present an approach to robust estimation of shape from single-view multi-spectral polarisation images. The developed technique tackles the problem of recovering the azimuth angle of surface normals robust to image noise and a low degree of polarisation. We note that the linear least-squares estimation results in a considerable phase shift from the ground truth in the presence of noise and weak polarisation in multispectral and hyper spectral imaging. This paper discusses the utility of robust statistics to discount the large error attributed to outliers and noise. Combining this approach with Shape from Shading, we fully recover the surface shape. We demonstrate the effectiveness of the robust estimator compared to the linear least-squares estimator through shape recovery experiments on both synthetic and real images.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.204</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.810-813
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5596052
source IEEE Xplore All Conference Series
subjects 3D Shape Recovery
Azimuth
Equations
Hyperspectral Imagery
Multispectral Imagery
Noise
Pixel
Polarisation
Robust Statistics
Robustness
Shape
Shape from Shading
Shape from X
Surface treatment
title Robust Shape from Polarisation and Shading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Shape%20from%20Polarisation%20and%20Shading&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Cong%20Phuoc%20Huynh&rft.date=2010-08&rft.spage=810&rft.epage=813&rft.pages=810-813&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.204&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_CHZPO%3E5596052%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1294-393149d8e0219a205433c52d297f7bc06262db2ad23dd9eb0049d3e00191e64f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5596052&rfr_iscdi=true