Loading…

Learning objects on the fly - object recognition for the here and now

We present a robotic vision system for object recognition, pose estimation and fast object learning. Our approach uses the Dynamic Neural Field Theory to combine bottom-up recognition of matching patterns and top-down estimation of pose parameters in a recurrent loop. Because Dynamic Neural Fields p...

Full description

Saved in:
Bibliographic Details
Main Authors: Faubel, C, Schöner, G
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a robotic vision system for object recognition, pose estimation and fast object learning. Our approach uses the Dynamic Neural Field Theory to combine bottom-up recognition of matching patterns and top-down estimation of pose parameters in a recurrent loop. Because Dynamic Neural Fields provide the system with stabilized percepts that still track changes in the incoming sensory stream, the system is able to do pose tracking even if objects are shortly occluded or distractor objects are moved into the scene.
ISSN:2161-4393
2161-4407
DOI:10.1109/IJCNN.2010.5596558