Loading…
The Detection of Concept Frames Using Clustering Multi-instance Learning
The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2920 |
container_issue | |
container_start_page | 2917 |
container_title | |
container_volume | |
creator | Tax, D M J Hendriks, E Valstar, M F Pantic, M |
description | The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases. |
doi_str_mv | 10.1109/ICPR.2010.715 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5597059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597059</ieee_id><sourcerecordid>5597059</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e20f96aa7dbe942bb9bd9129377ca4e06750353cef2ed1750a7eccacd1ab75d43</originalsourceid><addsrcrecordid>eNo1js1OwzAQhM2fRCg5cuLiF0jxOnZcH1GgtFIQCIVzZTsbsJQmVeweeHuMgNPMN7NaDSE3wJYATN9t69e3JWcJFcgTkmu1AsGFUFKAOCUZX5VQqIRn5Oq_4PycZMAkFKKScEnyELxlvFKVklJmZNN-In3AiC76aaRTT-tpdHiIdD2bPQb6Hvz4QevhGCLOP_b5OERf-DFEkw5pg2YeU35NLnozBMz_dEHa9WNbb4rm5Wlb3zeF1ywWyFmvK2NUZ1ELbq22nQauS6WcEcjSKlbK0mHPsYMERqFzxnVgrJKdKBfk9vetR8TdYfZ7M3_tpNSKSV1-A7PjUL8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Detection of Concept Frames Using Clustering Multi-instance Learning</title><source>IEEE Xplore All Conference Series</source><creator>Tax, D M J ; Hendriks, E ; Valstar, M F ; Pantic, M</creator><creatorcontrib>Tax, D M J ; Hendriks, E ; Valstar, M F ; Pantic, M</creatorcontrib><description>The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.715</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; Data models ; Gold ; Hidden Markov models ; Logistics ; multi-instance learning ; Pattern recognition ; Time series analysis ; time series classification ; Training</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2917-2920</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597059$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tax, D M J</creatorcontrib><creatorcontrib>Hendriks, E</creatorcontrib><creatorcontrib>Valstar, M F</creatorcontrib><creatorcontrib>Pantic, M</creatorcontrib><title>The Detection of Concept Frames Using Clustering Multi-instance Learning</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases.</description><subject>classification</subject><subject>Data models</subject><subject>Gold</subject><subject>Hidden Markov models</subject><subject>Logistics</subject><subject>multi-instance learning</subject><subject>Pattern recognition</subject><subject>Time series analysis</subject><subject>time series classification</subject><subject>Training</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1js1OwzAQhM2fRCg5cuLiF0jxOnZcH1GgtFIQCIVzZTsbsJQmVeweeHuMgNPMN7NaDSE3wJYATN9t69e3JWcJFcgTkmu1AsGFUFKAOCUZX5VQqIRn5Oq_4PycZMAkFKKScEnyELxlvFKVklJmZNN-In3AiC76aaRTT-tpdHiIdD2bPQb6Hvz4QevhGCLOP_b5OERf-DFEkw5pg2YeU35NLnozBMz_dEHa9WNbb4rm5Wlb3zeF1ywWyFmvK2NUZ1ELbq22nQauS6WcEcjSKlbK0mHPsYMERqFzxnVgrJKdKBfk9vetR8TdYfZ7M3_tpNSKSV1-A7PjUL8</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Tax, D M J</creator><creator>Hendriks, E</creator><creator>Valstar, M F</creator><creator>Pantic, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>The Detection of Concept Frames Using Clustering Multi-instance Learning</title><author>Tax, D M J ; Hendriks, E ; Valstar, M F ; Pantic, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e20f96aa7dbe942bb9bd9129377ca4e06750353cef2ed1750a7eccacd1ab75d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>classification</topic><topic>Data models</topic><topic>Gold</topic><topic>Hidden Markov models</topic><topic>Logistics</topic><topic>multi-instance learning</topic><topic>Pattern recognition</topic><topic>Time series analysis</topic><topic>time series classification</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Tax, D M J</creatorcontrib><creatorcontrib>Hendriks, E</creatorcontrib><creatorcontrib>Valstar, M F</creatorcontrib><creatorcontrib>Pantic, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tax, D M J</au><au>Hendriks, E</au><au>Valstar, M F</au><au>Pantic, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Detection of Concept Frames Using Clustering Multi-instance Learning</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2917</spage><epage>2920</epage><pages>2917-2920</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.715</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2010 20th International Conference on Pattern Recognition, 2010, p.2917-2920 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_5597059 |
source | IEEE Xplore All Conference Series |
subjects | classification Data models Gold Hidden Markov models Logistics multi-instance learning Pattern recognition Time series analysis time series classification Training |
title | The Detection of Concept Frames Using Clustering Multi-instance Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Detection%20of%20Concept%20Frames%20Using%20Clustering%20Multi-instance%20Learning&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Tax,%20D%20M%20J&rft.date=2010-08&rft.spage=2917&rft.epage=2920&rft.pages=2917-2920&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.715&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_CHZPO%3E5597059%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e20f96aa7dbe942bb9bd9129377ca4e06750353cef2ed1750a7eccacd1ab75d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597059&rfr_iscdi=true |