Loading…

The Detection of Concept Frames Using Clustering Multi-instance Learning

The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences...

Full description

Saved in:
Bibliographic Details
Main Authors: Tax, D M J, Hendriks, E, Valstar, M F, Pantic, M
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2920
container_issue
container_start_page 2917
container_title
container_volume
creator Tax, D M J
Hendriks, E
Valstar, M F
Pantic, M
description The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases.
doi_str_mv 10.1109/ICPR.2010.715
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5597059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597059</ieee_id><sourcerecordid>5597059</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e20f96aa7dbe942bb9bd9129377ca4e06750353cef2ed1750a7eccacd1ab75d43</originalsourceid><addsrcrecordid>eNo1js1OwzAQhM2fRCg5cuLiF0jxOnZcH1GgtFIQCIVzZTsbsJQmVeweeHuMgNPMN7NaDSE3wJYATN9t69e3JWcJFcgTkmu1AsGFUFKAOCUZX5VQqIRn5Oq_4PycZMAkFKKScEnyELxlvFKVklJmZNN-In3AiC76aaRTT-tpdHiIdD2bPQb6Hvz4QevhGCLOP_b5OERf-DFEkw5pg2YeU35NLnozBMz_dEHa9WNbb4rm5Wlb3zeF1ywWyFmvK2NUZ1ELbq22nQauS6WcEcjSKlbK0mHPsYMERqFzxnVgrJKdKBfk9vetR8TdYfZ7M3_tpNSKSV1-A7PjUL8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Detection of Concept Frames Using Clustering Multi-instance Learning</title><source>IEEE Xplore All Conference Series</source><creator>Tax, D M J ; Hendriks, E ; Valstar, M F ; Pantic, M</creator><creatorcontrib>Tax, D M J ; Hendriks, E ; Valstar, M F ; Pantic, M</creatorcontrib><description>The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.715</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; Data models ; Gold ; Hidden Markov models ; Logistics ; multi-instance learning ; Pattern recognition ; Time series analysis ; time series classification ; Training</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.2917-2920</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597059$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tax, D M J</creatorcontrib><creatorcontrib>Hendriks, E</creatorcontrib><creatorcontrib>Valstar, M F</creatorcontrib><creatorcontrib>Pantic, M</creatorcontrib><title>The Detection of Concept Frames Using Clustering Multi-instance Learning</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases.</description><subject>classification</subject><subject>Data models</subject><subject>Gold</subject><subject>Hidden Markov models</subject><subject>Logistics</subject><subject>multi-instance learning</subject><subject>Pattern recognition</subject><subject>Time series analysis</subject><subject>time series classification</subject><subject>Training</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1js1OwzAQhM2fRCg5cuLiF0jxOnZcH1GgtFIQCIVzZTsbsJQmVeweeHuMgNPMN7NaDSE3wJYATN9t69e3JWcJFcgTkmu1AsGFUFKAOCUZX5VQqIRn5Oq_4PycZMAkFKKScEnyELxlvFKVklJmZNN-In3AiC76aaRTT-tpdHiIdD2bPQb6Hvz4QevhGCLOP_b5OERf-DFEkw5pg2YeU35NLnozBMz_dEHa9WNbb4rm5Wlb3zeF1ywWyFmvK2NUZ1ELbq22nQauS6WcEcjSKlbK0mHPsYMERqFzxnVgrJKdKBfk9vetR8TdYfZ7M3_tpNSKSV1-A7PjUL8</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Tax, D M J</creator><creator>Hendriks, E</creator><creator>Valstar, M F</creator><creator>Pantic, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>The Detection of Concept Frames Using Clustering Multi-instance Learning</title><author>Tax, D M J ; Hendriks, E ; Valstar, M F ; Pantic, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e20f96aa7dbe942bb9bd9129377ca4e06750353cef2ed1750a7eccacd1ab75d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>classification</topic><topic>Data models</topic><topic>Gold</topic><topic>Hidden Markov models</topic><topic>Logistics</topic><topic>multi-instance learning</topic><topic>Pattern recognition</topic><topic>Time series analysis</topic><topic>time series classification</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Tax, D M J</creatorcontrib><creatorcontrib>Hendriks, E</creatorcontrib><creatorcontrib>Valstar, M F</creatorcontrib><creatorcontrib>Pantic, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tax, D M J</au><au>Hendriks, E</au><au>Valstar, M F</au><au>Pantic, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Detection of Concept Frames Using Clustering Multi-instance Learning</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>2917</spage><epage>2920</epage><pages>2917-2920</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>The classification of sequences requires the combination of information from different time points. In this paper the detection of facial expressions is considered. Experiments on the detection of certain facial muscle activations in videos show that it is not always required to model the sequences fully, but that the presence of specific frames (the concept frame) can be sufficient for a reliable detection of certain facial expression classes. For the detection of these concept frames a standard classifier is often sufficient, although a more advanced clustering approach performs better in some cases.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.715</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.2917-2920
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597059
source IEEE Xplore All Conference Series
subjects classification
Data models
Gold
Hidden Markov models
Logistics
multi-instance learning
Pattern recognition
Time series analysis
time series classification
Training
title The Detection of Concept Frames Using Clustering Multi-instance Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Detection%20of%20Concept%20Frames%20Using%20Clustering%20Multi-instance%20Learning&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Tax,%20D%20M%20J&rft.date=2010-08&rft.spage=2917&rft.epage=2920&rft.pages=2917-2920&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.715&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_CHZPO%3E5597059%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e20f96aa7dbe942bb9bd9129377ca4e06750353cef2ed1750a7eccacd1ab75d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597059&rfr_iscdi=true