Loading…

Equipment fault detection with fitted wafer surfaces

This paper describes a new methodology for equipment fault detection. This methodology consists of fitting a thin-plate spline to post-process spatial data in order to construct a virtual wafer surface. The virtual wafer surface is then compared to an established baseline process surface, and the re...

Full description

Saved in:
Bibliographic Details
Main Authors: Gardner, M.M., Lu, J.C., Gyuresik, R.S., Wortman, J.J., Hornung, B.E., Heinisch, H.H., Rying, E.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 371
container_issue
container_start_page 364
container_title
container_volume
creator Gardner, M.M.
Lu, J.C.
Gyuresik, R.S.
Wortman, J.J.
Hornung, B.E.
Heinisch, H.H.
Rying, E.A.
description This paper describes a new methodology for equipment fault detection. This methodology consists of fitting a thin-plate spline to post-process spatial data in order to construct a virtual wafer surface. The virtual wafer surface is then compared to an established baseline process surface, and the resulting spatial signature is used to detect equipment faults. Statistical distributional studies of signature metrics using a parametric bootstrapping technique provide the justification of determining the significance of the signature. Data collected from a Rapid Thermal Chemical Vapor Deposition (RTCVD) process is used to illustrate the procedures. This method detected equipment faults for all 11 wafers that were subjected to induced equipment faults.
doi_str_mv 10.1109/IEMT.1996.559758
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_559758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>559758</ieee_id><sourcerecordid>559758</sourcerecordid><originalsourceid>FETCH-ieee_primary_5597583</originalsourceid><addsrcrecordid>eNp9jj0LwjAUAB9-gFW7i1P-QGvSJmnfLBUd3Nwl6AtGtNYmpfjvFXT2lhtuOYCF4KkQHFe7an9IBaJOlcJClQOIMlXoBHWmhzDlRcnzXMsMRxAJXmJSCuQTiL2_8g9SKokYgayenWvuVAdmTXcL7EyBTsE9ata7cGHWhUBn1htLLfNda82J_BzG1tw8xT_PYLmpDutt4ojo2LTubtrX8fuV_41vii84Iw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Equipment fault detection with fitted wafer surfaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gardner, M.M. ; Lu, J.C. ; Gyuresik, R.S. ; Wortman, J.J. ; Hornung, B.E. ; Heinisch, H.H. ; Rying, E.A.</creator><creatorcontrib>Gardner, M.M. ; Lu, J.C. ; Gyuresik, R.S. ; Wortman, J.J. ; Hornung, B.E. ; Heinisch, H.H. ; Rying, E.A.</creatorcontrib><description>This paper describes a new methodology for equipment fault detection. This methodology consists of fitting a thin-plate spline to post-process spatial data in order to construct a virtual wafer surface. The virtual wafer surface is then compared to an established baseline process surface, and the resulting spatial signature is used to detect equipment faults. Statistical distributional studies of signature metrics using a parametric bootstrapping technique provide the justification of determining the significance of the signature. Data collected from a Rapid Thermal Chemical Vapor Deposition (RTCVD) process is used to illustrate the procedures. This method detected equipment faults for all 11 wafers that were subjected to induced equipment faults.</description><identifier>ISSN: 1089-8190</identifier><identifier>ISBN: 0780336429</identifier><identifier>ISBN: 9780780336421</identifier><identifier>EISSN: 2576-9626</identifier><identifier>DOI: 10.1109/IEMT.1996.559758</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical vapor deposition ; Degradation ; Fault detection ; Fault diagnosis ; Rapid thermal processing ; Semiconductor device modeling ; Semiconductor process modeling ; Spline ; Statistics ; Surface fitting</subject><ispartof>Nineteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1996, p.364-371</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/559758$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/559758$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gardner, M.M.</creatorcontrib><creatorcontrib>Lu, J.C.</creatorcontrib><creatorcontrib>Gyuresik, R.S.</creatorcontrib><creatorcontrib>Wortman, J.J.</creatorcontrib><creatorcontrib>Hornung, B.E.</creatorcontrib><creatorcontrib>Heinisch, H.H.</creatorcontrib><creatorcontrib>Rying, E.A.</creatorcontrib><title>Equipment fault detection with fitted wafer surfaces</title><title>Nineteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium</title><addtitle>IEMT</addtitle><description>This paper describes a new methodology for equipment fault detection. This methodology consists of fitting a thin-plate spline to post-process spatial data in order to construct a virtual wafer surface. The virtual wafer surface is then compared to an established baseline process surface, and the resulting spatial signature is used to detect equipment faults. Statistical distributional studies of signature metrics using a parametric bootstrapping technique provide the justification of determining the significance of the signature. Data collected from a Rapid Thermal Chemical Vapor Deposition (RTCVD) process is used to illustrate the procedures. This method detected equipment faults for all 11 wafers that were subjected to induced equipment faults.</description><subject>Chemical vapor deposition</subject><subject>Degradation</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Rapid thermal processing</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor process modeling</subject><subject>Spline</subject><subject>Statistics</subject><subject>Surface fitting</subject><issn>1089-8190</issn><issn>2576-9626</issn><isbn>0780336429</isbn><isbn>9780780336421</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jj0LwjAUAB9-gFW7i1P-QGvSJmnfLBUd3Nwl6AtGtNYmpfjvFXT2lhtuOYCF4KkQHFe7an9IBaJOlcJClQOIMlXoBHWmhzDlRcnzXMsMRxAJXmJSCuQTiL2_8g9SKokYgayenWvuVAdmTXcL7EyBTsE9ata7cGHWhUBn1htLLfNda82J_BzG1tw8xT_PYLmpDutt4ojo2LTubtrX8fuV_41vii84Iw</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Gardner, M.M.</creator><creator>Lu, J.C.</creator><creator>Gyuresik, R.S.</creator><creator>Wortman, J.J.</creator><creator>Hornung, B.E.</creator><creator>Heinisch, H.H.</creator><creator>Rying, E.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Equipment fault detection with fitted wafer surfaces</title><author>Gardner, M.M. ; Lu, J.C. ; Gyuresik, R.S. ; Wortman, J.J. ; Hornung, B.E. ; Heinisch, H.H. ; Rying, E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5597583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Chemical vapor deposition</topic><topic>Degradation</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Rapid thermal processing</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor process modeling</topic><topic>Spline</topic><topic>Statistics</topic><topic>Surface fitting</topic><toplevel>online_resources</toplevel><creatorcontrib>Gardner, M.M.</creatorcontrib><creatorcontrib>Lu, J.C.</creatorcontrib><creatorcontrib>Gyuresik, R.S.</creatorcontrib><creatorcontrib>Wortman, J.J.</creatorcontrib><creatorcontrib>Hornung, B.E.</creatorcontrib><creatorcontrib>Heinisch, H.H.</creatorcontrib><creatorcontrib>Rying, E.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gardner, M.M.</au><au>Lu, J.C.</au><au>Gyuresik, R.S.</au><au>Wortman, J.J.</au><au>Hornung, B.E.</au><au>Heinisch, H.H.</au><au>Rying, E.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Equipment fault detection with fitted wafer surfaces</atitle><btitle>Nineteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium</btitle><stitle>IEMT</stitle><date>1996</date><risdate>1996</risdate><spage>364</spage><epage>371</epage><pages>364-371</pages><issn>1089-8190</issn><eissn>2576-9626</eissn><isbn>0780336429</isbn><isbn>9780780336421</isbn><abstract>This paper describes a new methodology for equipment fault detection. This methodology consists of fitting a thin-plate spline to post-process spatial data in order to construct a virtual wafer surface. The virtual wafer surface is then compared to an established baseline process surface, and the resulting spatial signature is used to detect equipment faults. Statistical distributional studies of signature metrics using a parametric bootstrapping technique provide the justification of determining the significance of the signature. Data collected from a Rapid Thermal Chemical Vapor Deposition (RTCVD) process is used to illustrate the procedures. This method detected equipment faults for all 11 wafers that were subjected to induced equipment faults.</abstract><pub>IEEE</pub><doi>10.1109/IEMT.1996.559758</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-8190
ispartof Nineteenth IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1996, p.364-371
issn 1089-8190
2576-9626
language eng
recordid cdi_ieee_primary_559758
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chemical vapor deposition
Degradation
Fault detection
Fault diagnosis
Rapid thermal processing
Semiconductor device modeling
Semiconductor process modeling
Spline
Statistics
Surface fitting
title Equipment fault detection with fitted wafer surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Equipment%20fault%20detection%20with%20fitted%20wafer%20surfaces&rft.btitle=Nineteenth%20IEEE/CPMT%20International%20Electronics%20Manufacturing%20Technology%20Symposium&rft.au=Gardner,%20M.M.&rft.date=1996&rft.spage=364&rft.epage=371&rft.pages=364-371&rft.issn=1089-8190&rft.eissn=2576-9626&rft.isbn=0780336429&rft.isbn_list=9780780336421&rft_id=info:doi/10.1109/IEMT.1996.559758&rft_dat=%3Cieee_6IE%3E559758%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_5597583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=559758&rfr_iscdi=true