Loading…

AUC-based Combination of Dichotomizers: Is Whole Maximization also Effective for Partial Maximization?

The combination of classifiers is an established technique to improve the classification performance. When dealing with two-class classification problems, a frequently used performance measure is the Area under the ROC curve (AUC) since it is more effective than accuracy. However, in many applicatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Ricamato, Maria Teresa, Tortorella, Francesco
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 76
container_issue
container_start_page 73
container_title
container_volume
creator Ricamato, Maria Teresa
Tortorella, Francesco
description The combination of classifiers is an established technique to improve the classification performance. When dealing with two-class classification problems, a frequently used performance measure is the Area under the ROC curve (AUC) since it is more effective than accuracy. However, in many applications, like medical or biometric ones, tests with false positive rate over a given value are of no practical use and thus irrelevant for evaluating the performance of the system. In these cases, the performance should be measured by looking only at the interesting part of the ROC curve. Consequently, the optimization goal is to maximize only a part of the AUC instead of the whole area. In this paper we propose a method tailored for these situations which builds a linear combination of two dichotomizers maximizing the partial AUC (pAUC). Another aim of the paper is to understand if methods that maximize the AUC can maximize also the pAUC. An empirical comparison drawn between algorithms maximizing the AUC and the proposed method shows that this latter is more effective for the pAUC maximization than methods designed to globally optimize the AUC.
doi_str_mv 10.1109/ICPR.2010.27
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597631</ieee_id><sourcerecordid>5597631</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5bbb6f456d1789a6b839cd84a51699eeeca138af5055172e6ba856972f6e5153</originalsourceid><addsrcrecordid>eNpVjEtLAzEUheMLHOvs3LnJH5iam8nNw42UsepAxeIDlyWZJjTQNjIzFPXXO1BduDp853wcQi6AjQGYuaqr-fOYswG5OiC5URoEF0KhAHFIMq5LKNSAR-Tsb-D8mGTAEAohEU5J3nXRMS6VVIiYkTB5qwpnO7-kVdq4uLV9TFuaAr2NzSr1aRO_fdtd07qj76u09vTRfsah3Ht23SU6DcE3fdx5GlJL57bto13_827OyUkYXJ__5oi83E1fq4di9nRfV5NZEQ3rC3TOySBQLkFpY6XTpWmWWlgEaYz3vrFQahuQIYLiXjqrURrFg_QIWI7I5f41Du7io40b234tEI2SJZQ_Wh5aMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AUC-based Combination of Dichotomizers: Is Whole Maximization also Effective for Partial Maximization?</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ricamato, Maria Teresa ; Tortorella, Francesco</creator><creatorcontrib>Ricamato, Maria Teresa ; Tortorella, Francesco</creatorcontrib><description>The combination of classifiers is an established technique to improve the classification performance. When dealing with two-class classification problems, a frequently used performance measure is the Area under the ROC curve (AUC) since it is more effective than accuracy. However, in many applications, like medical or biometric ones, tests with false positive rate over a given value are of no practical use and thus irrelevant for evaluating the performance of the system. In these cases, the performance should be measured by looking only at the interesting part of the ROC curve. Consequently, the optimization goal is to maximize only a part of the AUC instead of the whole area. In this paper we propose a method tailored for these situations which builds a linear combination of two dichotomizers maximizing the partial AUC (pAUC). Another aim of the paper is to understand if methods that maximize the AUC can maximize also the pAUC. An empirical comparison drawn between algorithms maximizing the AUC and the proposed method shows that this latter is more effective for the pAUC maximization than methods designed to globally optimize the AUC.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.27</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Area under the ROC Curve ; Combination of Classifiers ; Indexes ; Machine learning ; Machine learning algorithms ; Manganese ; Optimized production technology</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.73-76</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ricamato, Maria Teresa</creatorcontrib><creatorcontrib>Tortorella, Francesco</creatorcontrib><title>AUC-based Combination of Dichotomizers: Is Whole Maximization also Effective for Partial Maximization?</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>The combination of classifiers is an established technique to improve the classification performance. When dealing with two-class classification problems, a frequently used performance measure is the Area under the ROC curve (AUC) since it is more effective than accuracy. However, in many applications, like medical or biometric ones, tests with false positive rate over a given value are of no practical use and thus irrelevant for evaluating the performance of the system. In these cases, the performance should be measured by looking only at the interesting part of the ROC curve. Consequently, the optimization goal is to maximize only a part of the AUC instead of the whole area. In this paper we propose a method tailored for these situations which builds a linear combination of two dichotomizers maximizing the partial AUC (pAUC). Another aim of the paper is to understand if methods that maximize the AUC can maximize also the pAUC. An empirical comparison drawn between algorithms maximizing the AUC and the proposed method shows that this latter is more effective for the pAUC maximization than methods designed to globally optimize the AUC.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Area under the ROC Curve</subject><subject>Combination of Classifiers</subject><subject>Indexes</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Manganese</subject><subject>Optimized production technology</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVjEtLAzEUheMLHOvs3LnJH5iam8nNw42UsepAxeIDlyWZJjTQNjIzFPXXO1BduDp853wcQi6AjQGYuaqr-fOYswG5OiC5URoEF0KhAHFIMq5LKNSAR-Tsb-D8mGTAEAohEU5J3nXRMS6VVIiYkTB5qwpnO7-kVdq4uLV9TFuaAr2NzSr1aRO_fdtd07qj76u09vTRfsah3Ht23SU6DcE3fdx5GlJL57bto13_827OyUkYXJ__5oi83E1fq4di9nRfV5NZEQ3rC3TOySBQLkFpY6XTpWmWWlgEaYz3vrFQahuQIYLiXjqrURrFg_QIWI7I5f41Du7io40b234tEI2SJZQ_Wh5aMw</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Ricamato, Maria Teresa</creator><creator>Tortorella, Francesco</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>AUC-based Combination of Dichotomizers: Is Whole Maximization also Effective for Partial Maximization?</title><author>Ricamato, Maria Teresa ; Tortorella, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5bbb6f456d1789a6b839cd84a51699eeeca138af5055172e6ba856972f6e5153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Area under the ROC Curve</topic><topic>Combination of Classifiers</topic><topic>Indexes</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Manganese</topic><topic>Optimized production technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ricamato, Maria Teresa</creatorcontrib><creatorcontrib>Tortorella, Francesco</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ricamato, Maria Teresa</au><au>Tortorella, Francesco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AUC-based Combination of Dichotomizers: Is Whole Maximization also Effective for Partial Maximization?</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>73</spage><epage>76</epage><pages>73-76</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>The combination of classifiers is an established technique to improve the classification performance. When dealing with two-class classification problems, a frequently used performance measure is the Area under the ROC curve (AUC) since it is more effective than accuracy. However, in many applications, like medical or biometric ones, tests with false positive rate over a given value are of no practical use and thus irrelevant for evaluating the performance of the system. In these cases, the performance should be measured by looking only at the interesting part of the ROC curve. Consequently, the optimization goal is to maximize only a part of the AUC instead of the whole area. In this paper we propose a method tailored for these situations which builds a linear combination of two dichotomizers maximizing the partial AUC (pAUC). Another aim of the paper is to understand if methods that maximize the AUC can maximize also the pAUC. An empirical comparison drawn between algorithms maximizing the AUC and the proposed method shows that this latter is more effective for the pAUC maximization than methods designed to globally optimize the AUC.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.27</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.73-76
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597631
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Algorithm design and analysis
Area under the ROC Curve
Combination of Classifiers
Indexes
Machine learning
Machine learning algorithms
Manganese
Optimized production technology
title AUC-based Combination of Dichotomizers: Is Whole Maximization also Effective for Partial Maximization?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AUC-based%20Combination%20of%20Dichotomizers:%20Is%20Whole%20Maximization%20also%20Effective%20for%20Partial%20Maximization?&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Ricamato,%20Maria%20Teresa&rft.date=2010-08&rft.spage=73&rft.epage=76&rft.pages=73-76&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.27&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_6IE%3E5597631%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-5bbb6f456d1789a6b839cd84a51699eeeca138af5055172e6ba856972f6e5153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597631&rfr_iscdi=true