Loading…
3D Vertebral Body Segmentation Using Shape Based Graph Cuts
Bone mineral density (BMD) measurements and fracture analysis of the spine bones are restricted to the Vertebral bodies (VBs). In this paper, we propose a novel 3D shape based method to segment VBs in clinical computed tomography (CT) images without any user intervention. The proposed method depends...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3954 |
container_issue | |
container_start_page | 3951 |
container_title | |
container_volume | |
creator | Aslan, M S Ali, A Farag, A A Rara, H Arnold, B Ping Xiang |
description | Bone mineral density (BMD) measurements and fracture analysis of the spine bones are restricted to the Vertebral bodies (VBs). In this paper, we propose a novel 3D shape based method to segment VBs in clinical computed tomography (CT) images without any user intervention. The proposed method depends on both image appearance and shape information. 3D shape information is obtained from a set of training data sets. Then, we estimate the shape variations using a distance probabilistic model which approximates the marginal densities of the VB and background in the variability region. To segment a VB, the Matched filter is used to detect the VB region automatically. We align the detected volume with 3D shape prior in order to be used in distance probabilistic model. Then, the graph cuts method which integrates the linear combination of Gaussians (LCG), Markov Gibbs Random Field (MGRF), and distance probabilistic model obtained from 3D shape prior is used. Experiments on the data sets show that the proposed segmentation approach is more accurate than other known alternatives. |
doi_str_mv | 10.1109/ICPR.2010.961 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5597668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597668</ieee_id><sourcerecordid>5597668</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f2512f8cf020d8480609a62f0828fd3a7f9f0a5b154f8a28bee1048bbfdcce03</originalsourceid><addsrcrecordid>eNo1jMtKw0AUQMcXGGuWrtzMD6TeO5knrmzUWigoRt2WSXKnDbRpyMRF_96CujocDhzGbhCmiODuFsXb-1TAUZ3GE5Y6Y1EKKY2SKE9ZImyOmTnqGbv6D0KcswRBYSa1wkuWxthWILTRRimVsPv8kX_RMFI1-C2f7ZsDL2m9o270Y7vv-GdsuzUvN74nPvORGj4ffL_hxfcYr9lF8NtI6R8nrHx--ihesuXrfFE8LLPWwZgFoVAEWwcQ0FhpQYPzWgSwwoYm9ya4AF5VqGSwXtiKCEHaqgpNXRPkE3b7e22JaNUP7c4Ph5VSzmht8x8dxkpW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3D Vertebral Body Segmentation Using Shape Based Graph Cuts</title><source>IEEE Xplore All Conference Series</source><creator>Aslan, M S ; Ali, A ; Farag, A A ; Rara, H ; Arnold, B ; Ping Xiang</creator><creatorcontrib>Aslan, M S ; Ali, A ; Farag, A A ; Rara, H ; Arnold, B ; Ping Xiang</creatorcontrib><description>Bone mineral density (BMD) measurements and fracture analysis of the spine bones are restricted to the Vertebral bodies (VBs). In this paper, we propose a novel 3D shape based method to segment VBs in clinical computed tomography (CT) images without any user intervention. The proposed method depends on both image appearance and shape information. 3D shape information is obtained from a set of training data sets. Then, we estimate the shape variations using a distance probabilistic model which approximates the marginal densities of the VB and background in the variability region. To segment a VB, the Matched filter is used to detect the VB region automatically. We align the detected volume with 3D shape prior in order to be used in distance probabilistic model. Then, the graph cuts method which integrates the linear combination of Gaussians (LCG), Markov Gibbs Random Field (MGRF), and distance probabilistic model obtained from 3D shape prior is used. Experiments on the data sets show that the proposed segmentation approach is more accurate than other known alternatives.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bones ; Computed tomography ; Image segmentation ; MGRF model ; Probabilistic logic ; Shape ; shape based grapg cuts ; Three dimensional displays ; Vertebrae segmentation</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.3951-3954</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597668$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597668$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aslan, M S</creatorcontrib><creatorcontrib>Ali, A</creatorcontrib><creatorcontrib>Farag, A A</creatorcontrib><creatorcontrib>Rara, H</creatorcontrib><creatorcontrib>Arnold, B</creatorcontrib><creatorcontrib>Ping Xiang</creatorcontrib><title>3D Vertebral Body Segmentation Using Shape Based Graph Cuts</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Bone mineral density (BMD) measurements and fracture analysis of the spine bones are restricted to the Vertebral bodies (VBs). In this paper, we propose a novel 3D shape based method to segment VBs in clinical computed tomography (CT) images without any user intervention. The proposed method depends on both image appearance and shape information. 3D shape information is obtained from a set of training data sets. Then, we estimate the shape variations using a distance probabilistic model which approximates the marginal densities of the VB and background in the variability region. To segment a VB, the Matched filter is used to detect the VB region automatically. We align the detected volume with 3D shape prior in order to be used in distance probabilistic model. Then, the graph cuts method which integrates the linear combination of Gaussians (LCG), Markov Gibbs Random Field (MGRF), and distance probabilistic model obtained from 3D shape prior is used. Experiments on the data sets show that the proposed segmentation approach is more accurate than other known alternatives.</description><subject>Accuracy</subject><subject>Bones</subject><subject>Computed tomography</subject><subject>Image segmentation</subject><subject>MGRF model</subject><subject>Probabilistic logic</subject><subject>Shape</subject><subject>shape based grapg cuts</subject><subject>Three dimensional displays</subject><subject>Vertebrae segmentation</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jMtKw0AUQMcXGGuWrtzMD6TeO5knrmzUWigoRt2WSXKnDbRpyMRF_96CujocDhzGbhCmiODuFsXb-1TAUZ3GE5Y6Y1EKKY2SKE9ZImyOmTnqGbv6D0KcswRBYSa1wkuWxthWILTRRimVsPv8kX_RMFI1-C2f7ZsDL2m9o270Y7vv-GdsuzUvN74nPvORGj4ffL_hxfcYr9lF8NtI6R8nrHx--ihesuXrfFE8LLPWwZgFoVAEWwcQ0FhpQYPzWgSwwoYm9ya4AF5VqGSwXtiKCEHaqgpNXRPkE3b7e22JaNUP7c4Ph5VSzmht8x8dxkpW</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Aslan, M S</creator><creator>Ali, A</creator><creator>Farag, A A</creator><creator>Rara, H</creator><creator>Arnold, B</creator><creator>Ping Xiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>3D Vertebral Body Segmentation Using Shape Based Graph Cuts</title><author>Aslan, M S ; Ali, A ; Farag, A A ; Rara, H ; Arnold, B ; Ping Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f2512f8cf020d8480609a62f0828fd3a7f9f0a5b154f8a28bee1048bbfdcce03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Bones</topic><topic>Computed tomography</topic><topic>Image segmentation</topic><topic>MGRF model</topic><topic>Probabilistic logic</topic><topic>Shape</topic><topic>shape based grapg cuts</topic><topic>Three dimensional displays</topic><topic>Vertebrae segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Aslan, M S</creatorcontrib><creatorcontrib>Ali, A</creatorcontrib><creatorcontrib>Farag, A A</creatorcontrib><creatorcontrib>Rara, H</creatorcontrib><creatorcontrib>Arnold, B</creatorcontrib><creatorcontrib>Ping Xiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aslan, M S</au><au>Ali, A</au><au>Farag, A A</au><au>Rara, H</au><au>Arnold, B</au><au>Ping Xiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3D Vertebral Body Segmentation Using Shape Based Graph Cuts</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>3951</spage><epage>3954</epage><pages>3951-3954</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Bone mineral density (BMD) measurements and fracture analysis of the spine bones are restricted to the Vertebral bodies (VBs). In this paper, we propose a novel 3D shape based method to segment VBs in clinical computed tomography (CT) images without any user intervention. The proposed method depends on both image appearance and shape information. 3D shape information is obtained from a set of training data sets. Then, we estimate the shape variations using a distance probabilistic model which approximates the marginal densities of the VB and background in the variability region. To segment a VB, the Matched filter is used to detect the VB region automatically. We align the detected volume with 3D shape prior in order to be used in distance probabilistic model. Then, the graph cuts method which integrates the linear combination of Gaussians (LCG), Markov Gibbs Random Field (MGRF), and distance probabilistic model obtained from 3D shape prior is used. Experiments on the data sets show that the proposed segmentation approach is more accurate than other known alternatives.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.961</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2010 20th International Conference on Pattern Recognition, 2010, p.3951-3954 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_5597668 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Bones Computed tomography Image segmentation MGRF model Probabilistic logic Shape shape based grapg cuts Three dimensional displays Vertebrae segmentation |
title | 3D Vertebral Body Segmentation Using Shape Based Graph Cuts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3D%20Vertebral%20Body%20Segmentation%20Using%20Shape%20Based%20Graph%20Cuts&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Aslan,%20M%20S&rft.date=2010-08&rft.spage=3951&rft.epage=3954&rft.pages=3951-3954&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.961&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_CHZPO%3E5597668%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-f2512f8cf020d8480609a62f0828fd3a7f9f0a5b154f8a28bee1048bbfdcce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597668&rfr_iscdi=true |