Loading…
Fire-Flame Detection Based on Fuzzy Finite Automation
This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Sin...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3922 |
container_issue | |
container_start_page | 3919 |
container_title | |
container_volume | |
creator | SunJae Ham ByoungChul Ko JaeYeal Nam |
description | This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods. |
doi_str_mv | 10.1109/ICPR.2010.953 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597676</ieee_id><sourcerecordid>5597676</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8b00bb1a091f5b2f0f4586c2b6416d2dab1e51361638a518cae47a4656a76f333</originalsourceid><addsrcrecordid>eNo1jstOwzAURM1LIpQsWbHJD7j42r5-LEtKoFIlEOq-spMbyVLToiRdtF9PELCaOZrRaBh7ADEHEP5pVX58zqWY0KO6YLm3DrTU2qIGfcky6RRwO-EVu_sPpLxmGQgErg3CLcuHIUUhjTUWETOGVeqJV7vQUbGkkeoxHfbFcxioKSZTHc_nU1GlfRqpWBzHQxd-Cvfspg27gfI_nbFN9bIp3_j6_XVVLtY8eTFyF4WIEYLw0GKUrWg1OlPLaDSYRjYhAiEoA0a5gODqQNqG6acJ1rRKqRl7_J1NRLT96lMX-tMW0U_vjfoGmOxIDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fire-Flame Detection Based on Fuzzy Finite Automation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>SunJae Ham ; ByoungChul Ko ; JaeYeal Nam</creator><creatorcontrib>SunJae Ham ; ByoungChul Ko ; JaeYeal Nam</creatorcontrib><description>This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.953</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata ; background subtraction ; Feature extraction ; FFA ; Fire-flame ; Fires ; Fuzzy logic ; Mathematical model ; Motion pictures ; probabilistic membership function ; Videos</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.3919-3922</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>SunJae Ham</creatorcontrib><creatorcontrib>ByoungChul Ko</creatorcontrib><creatorcontrib>JaeYeal Nam</creatorcontrib><title>Fire-Flame Detection Based on Fuzzy Finite Automation</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.</description><subject>Automata</subject><subject>background subtraction</subject><subject>Feature extraction</subject><subject>FFA</subject><subject>Fire-flame</subject><subject>Fires</subject><subject>Fuzzy logic</subject><subject>Mathematical model</subject><subject>Motion pictures</subject><subject>probabilistic membership function</subject><subject>Videos</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jstOwzAURM1LIpQsWbHJD7j42r5-LEtKoFIlEOq-spMbyVLToiRdtF9PELCaOZrRaBh7ADEHEP5pVX58zqWY0KO6YLm3DrTU2qIGfcky6RRwO-EVu_sPpLxmGQgErg3CLcuHIUUhjTUWETOGVeqJV7vQUbGkkeoxHfbFcxioKSZTHc_nU1GlfRqpWBzHQxd-Cvfspg27gfI_nbFN9bIp3_j6_XVVLtY8eTFyF4WIEYLw0GKUrWg1OlPLaDSYRjYhAiEoA0a5gODqQNqG6acJ1rRKqRl7_J1NRLT96lMX-tMW0U_vjfoGmOxIDg</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>SunJae Ham</creator><creator>ByoungChul Ko</creator><creator>JaeYeal Nam</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Fire-Flame Detection Based on Fuzzy Finite Automation</title><author>SunJae Ham ; ByoungChul Ko ; JaeYeal Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8b00bb1a091f5b2f0f4586c2b6416d2dab1e51361638a518cae47a4656a76f333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automata</topic><topic>background subtraction</topic><topic>Feature extraction</topic><topic>FFA</topic><topic>Fire-flame</topic><topic>Fires</topic><topic>Fuzzy logic</topic><topic>Mathematical model</topic><topic>Motion pictures</topic><topic>probabilistic membership function</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>SunJae Ham</creatorcontrib><creatorcontrib>ByoungChul Ko</creatorcontrib><creatorcontrib>JaeYeal Nam</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SunJae Ham</au><au>ByoungChul Ko</au><au>JaeYeal Nam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fire-Flame Detection Based on Fuzzy Finite Automation</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>3919</spage><epage>3922</epage><pages>3919-3922</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.953</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 2010 20th International Conference on Pattern Recognition, 2010, p.3919-3922 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_5597676 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automata background subtraction Feature extraction FFA Fire-flame Fires Fuzzy logic Mathematical model Motion pictures probabilistic membership function Videos |
title | Fire-Flame Detection Based on Fuzzy Finite Automation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fire-Flame%20Detection%20Based%20on%20Fuzzy%20Finite%20Automation&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=SunJae%20Ham&rft.date=2010-08&rft.spage=3919&rft.epage=3922&rft.pages=3919-3922&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.953&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_6IE%3E5597676%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8b00bb1a091f5b2f0f4586c2b6416d2dab1e51361638a518cae47a4656a76f333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597676&rfr_iscdi=true |