Loading…

Fire-Flame Detection Based on Fuzzy Finite Automation

This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Sin...

Full description

Saved in:
Bibliographic Details
Main Authors: SunJae Ham, ByoungChul Ko, JaeYeal Nam
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3922
container_issue
container_start_page 3919
container_title
container_volume
creator SunJae Ham
ByoungChul Ko
JaeYeal Nam
description This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.
doi_str_mv 10.1109/ICPR.2010.953
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597676</ieee_id><sourcerecordid>5597676</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8b00bb1a091f5b2f0f4586c2b6416d2dab1e51361638a518cae47a4656a76f333</originalsourceid><addsrcrecordid>eNo1jstOwzAURM1LIpQsWbHJD7j42r5-LEtKoFIlEOq-spMbyVLToiRdtF9PELCaOZrRaBh7ADEHEP5pVX58zqWY0KO6YLm3DrTU2qIGfcky6RRwO-EVu_sPpLxmGQgErg3CLcuHIUUhjTUWETOGVeqJV7vQUbGkkeoxHfbFcxioKSZTHc_nU1GlfRqpWBzHQxd-Cvfspg27gfI_nbFN9bIp3_j6_XVVLtY8eTFyF4WIEYLw0GKUrWg1OlPLaDSYRjYhAiEoA0a5gODqQNqG6acJ1rRKqRl7_J1NRLT96lMX-tMW0U_vjfoGmOxIDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fire-Flame Detection Based on Fuzzy Finite Automation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>SunJae Ham ; ByoungChul Ko ; JaeYeal Nam</creator><creatorcontrib>SunJae Ham ; ByoungChul Ko ; JaeYeal Nam</creatorcontrib><description>This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.953</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata ; background subtraction ; Feature extraction ; FFA ; Fire-flame ; Fires ; Fuzzy logic ; Mathematical model ; Motion pictures ; probabilistic membership function ; Videos</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.3919-3922</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>SunJae Ham</creatorcontrib><creatorcontrib>ByoungChul Ko</creatorcontrib><creatorcontrib>JaeYeal Nam</creatorcontrib><title>Fire-Flame Detection Based on Fuzzy Finite Automation</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.</description><subject>Automata</subject><subject>background subtraction</subject><subject>Feature extraction</subject><subject>FFA</subject><subject>Fire-flame</subject><subject>Fires</subject><subject>Fuzzy logic</subject><subject>Mathematical model</subject><subject>Motion pictures</subject><subject>probabilistic membership function</subject><subject>Videos</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jstOwzAURM1LIpQsWbHJD7j42r5-LEtKoFIlEOq-spMbyVLToiRdtF9PELCaOZrRaBh7ADEHEP5pVX58zqWY0KO6YLm3DrTU2qIGfcky6RRwO-EVu_sPpLxmGQgErg3CLcuHIUUhjTUWETOGVeqJV7vQUbGkkeoxHfbFcxioKSZTHc_nU1GlfRqpWBzHQxd-Cvfspg27gfI_nbFN9bIp3_j6_XVVLtY8eTFyF4WIEYLw0GKUrWg1OlPLaDSYRjYhAiEoA0a5gODqQNqG6acJ1rRKqRl7_J1NRLT96lMX-tMW0U_vjfoGmOxIDg</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>SunJae Ham</creator><creator>ByoungChul Ko</creator><creator>JaeYeal Nam</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Fire-Flame Detection Based on Fuzzy Finite Automation</title><author>SunJae Ham ; ByoungChul Ko ; JaeYeal Nam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8b00bb1a091f5b2f0f4586c2b6416d2dab1e51361638a518cae47a4656a76f333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automata</topic><topic>background subtraction</topic><topic>Feature extraction</topic><topic>FFA</topic><topic>Fire-flame</topic><topic>Fires</topic><topic>Fuzzy logic</topic><topic>Mathematical model</topic><topic>Motion pictures</topic><topic>probabilistic membership function</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>SunJae Ham</creatorcontrib><creatorcontrib>ByoungChul Ko</creatorcontrib><creatorcontrib>JaeYeal Nam</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SunJae Ham</au><au>ByoungChul Ko</au><au>JaeYeal Nam</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fire-Flame Detection Based on Fuzzy Finite Automation</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>3919</spage><epage>3922</epage><pages>3919-3922</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generate and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.953</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.3919-3922
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597676
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automata
background subtraction
Feature extraction
FFA
Fire-flame
Fires
Fuzzy logic
Mathematical model
Motion pictures
probabilistic membership function
Videos
title Fire-Flame Detection Based on Fuzzy Finite Automation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fire-Flame%20Detection%20Based%20on%20Fuzzy%20Finite%20Automation&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=SunJae%20Ham&rft.date=2010-08&rft.spage=3919&rft.epage=3922&rft.pages=3919-3922&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.953&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_6IE%3E5597676%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8b00bb1a091f5b2f0f4586c2b6416d2dab1e51361638a518cae47a4656a76f333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597676&rfr_iscdi=true