Loading…

Fast Training of Object Detection Using Stochastic Gradient Descent

Training datasets for object detection problems are typically very large and Support Vector Machine (SVM) implementations are computationally complex. As opposed to these complex techniques, we use Stochastic Gradient Descent (SGD) algorithms that use only a single new training sample in each iterat...

Full description

Saved in:
Bibliographic Details
Main Authors: Wijnhoven, R G J, de With, P H N
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 427
container_issue
container_start_page 424
container_title
container_volume
creator Wijnhoven, R G J
de With, P H N
description Training datasets for object detection problems are typically very large and Support Vector Machine (SVM) implementations are computationally complex. As opposed to these complex techniques, we use Stochastic Gradient Descent (SGD) algorithms that use only a single new training sample in each iteration and process samples in a stream-like fashion. We have incorporated SGD optimization in an object detection framework. The object detection problem is typically highly asymmetric, because of the limited variation in object appearance, compared to the background. Incorporating SGD speeds up the optimization process significantly, requiring only a single iteration over the training set to obtain results comparable to state-of-the-art SVM techniques. SGD optimization is linearly scalable in time and the obtained speedup in computation time is two to three orders of magnitude. We show that by considering only part of the total training set, SGD converges quickly to the overall optimum.
doi_str_mv 10.1109/ICPR.2010.112
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5597822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597822</ieee_id><sourcerecordid>5597822</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1952-159883e3b0ae5e4a71653890bd3bd412af37a3050b7e25ff865d6106e914e4133</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1LIpQsWbHxD6T42r52vESBlkqViqBdV3ZyA0aQoDgb_p6Ux-poNEezGMauQMwBhLtZVY9Pcyl-ojxiubMlaKm1RQ36mGWyVFDYKZ6wi_9CylOWgUAotEE4Z3lKMQhprLGImLFq4dPIt4OPXexeeN_yTXijeuR3NE6Ifcd36dA8j339Ormx5svBN5G6g5PqiZfsrPXvifI_zthucb-tHor1ZrmqbtdFBIeyAHRlqUgF4QlJewsGVelEaFRoNEjfKuuVQBEsSWzb0mBjQBhyoEmDUjN2_bsbiWj_OcQPP3ztEacfpFTflyhM-A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast Training of Object Detection Using Stochastic Gradient Descent</title><source>IEEE Xplore All Conference Series</source><creator>Wijnhoven, R G J ; de With, P H N</creator><creatorcontrib>Wijnhoven, R G J ; de With, P H N</creatorcontrib><description>Training datasets for object detection problems are typically very large and Support Vector Machine (SVM) implementations are computationally complex. As opposed to these complex techniques, we use Stochastic Gradient Descent (SGD) algorithms that use only a single new training sample in each iteration and process samples in a stream-like fashion. We have incorporated SGD optimization in an object detection framework. The object detection problem is typically highly asymmetric, because of the limited variation in object appearance, compared to the background. Incorporating SGD speeds up the optimization process significantly, requiring only a single iteration over the training set to obtain results comparable to state-of-the-art SVM techniques. SGD optimization is linearly scalable in time and the obtained speedup in computation time is two to three orders of magnitude. We show that by considering only part of the total training set, SGD converges quickly to the overall optimum.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.112</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; Computer vision ; detection ; Feature extraction ; histogram of oriented gradients ; HOG ; Object detection ; object recognition ; Optimization ; Pattern recognition ; stochastic gradient descent ; Support vector machines ; SVM ; Training</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.424-427</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wijnhoven, R G J</creatorcontrib><creatorcontrib>de With, P H N</creatorcontrib><title>Fast Training of Object Detection Using Stochastic Gradient Descent</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>Training datasets for object detection problems are typically very large and Support Vector Machine (SVM) implementations are computationally complex. As opposed to these complex techniques, we use Stochastic Gradient Descent (SGD) algorithms that use only a single new training sample in each iteration and process samples in a stream-like fashion. We have incorporated SGD optimization in an object detection framework. The object detection problem is typically highly asymmetric, because of the limited variation in object appearance, compared to the background. Incorporating SGD speeds up the optimization process significantly, requiring only a single iteration over the training set to obtain results comparable to state-of-the-art SVM techniques. SGD optimization is linearly scalable in time and the obtained speedup in computation time is two to three orders of magnitude. We show that by considering only part of the total training set, SGD converges quickly to the overall optimum.</description><subject>classification</subject><subject>Computer vision</subject><subject>detection</subject><subject>Feature extraction</subject><subject>histogram of oriented gradients</subject><subject>HOG</subject><subject>Object detection</subject><subject>object recognition</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>stochastic gradient descent</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Training</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURM1LIpQsWbHxD6T42r52vESBlkqViqBdV3ZyA0aQoDgb_p6Ux-poNEezGMauQMwBhLtZVY9Pcyl-ojxiubMlaKm1RQ36mGWyVFDYKZ6wi_9CylOWgUAotEE4Z3lKMQhprLGImLFq4dPIt4OPXexeeN_yTXijeuR3NE6Ifcd36dA8j339Ormx5svBN5G6g5PqiZfsrPXvifI_zthucb-tHor1ZrmqbtdFBIeyAHRlqUgF4QlJewsGVelEaFRoNEjfKuuVQBEsSWzb0mBjQBhyoEmDUjN2_bsbiWj_OcQPP3ztEacfpFTflyhM-A</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Wijnhoven, R G J</creator><creator>de With, P H N</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Fast Training of Object Detection Using Stochastic Gradient Descent</title><author>Wijnhoven, R G J ; de With, P H N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1952-159883e3b0ae5e4a71653890bd3bd412af37a3050b7e25ff865d6106e914e4133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>classification</topic><topic>Computer vision</topic><topic>detection</topic><topic>Feature extraction</topic><topic>histogram of oriented gradients</topic><topic>HOG</topic><topic>Object detection</topic><topic>object recognition</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>stochastic gradient descent</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wijnhoven, R G J</creatorcontrib><creatorcontrib>de With, P H N</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wijnhoven, R G J</au><au>de With, P H N</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast Training of Object Detection Using Stochastic Gradient Descent</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>424</spage><epage>427</epage><pages>424-427</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>Training datasets for object detection problems are typically very large and Support Vector Machine (SVM) implementations are computationally complex. As opposed to these complex techniques, we use Stochastic Gradient Descent (SGD) algorithms that use only a single new training sample in each iteration and process samples in a stream-like fashion. We have incorporated SGD optimization in an object detection framework. The object detection problem is typically highly asymmetric, because of the limited variation in object appearance, compared to the background. Incorporating SGD speeds up the optimization process significantly, requiring only a single iteration over the training set to obtain results comparable to state-of-the-art SVM techniques. SGD optimization is linearly scalable in time and the obtained speedup in computation time is two to three orders of magnitude. We show that by considering only part of the total training set, SGD converges quickly to the overall optimum.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.112</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.424-427
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597822
source IEEE Xplore All Conference Series
subjects classification
Computer vision
detection
Feature extraction
histogram of oriented gradients
HOG
Object detection
object recognition
Optimization
Pattern recognition
stochastic gradient descent
Support vector machines
SVM
Training
title Fast Training of Object Detection Using Stochastic Gradient Descent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20Training%20of%20Object%20Detection%20Using%20Stochastic%20Gradient%20Descent&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Wijnhoven,%20R%20G%20J&rft.date=2010-08&rft.spage=424&rft.epage=427&rft.pages=424-427&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.112&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_CHZPO%3E5597822%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1952-159883e3b0ae5e4a71653890bd3bd412af37a3050b7e25ff865d6106e914e4133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597822&rfr_iscdi=true