Loading…

Unsupervised Image Retrieval with Similar Lighting Conditions

In this work a new method to retrieve images with similar lighting conditions is presented. It is based on automatic clustering and automatic indexing. Our proposal belongs to Content Based Image Retrieval (CBIR) category. The goal is to retrieve from a database, images (by their content) with simil...

Full description

Saved in:
Bibliographic Details
Main Authors: Serrano, J F, Avilés, C, Sossa, H, Villegas, J, Olague, G
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4371
container_issue
container_start_page 4368
container_title
container_volume
creator Serrano, J F
Avilés, C
Sossa, H
Villegas, J
Olague, G
description In this work a new method to retrieve images with similar lighting conditions is presented. It is based on automatic clustering and automatic indexing. Our proposal belongs to Content Based Image Retrieval (CBIR) category. The goal is to retrieve from a database, images (by their content) with similar lighting conditions. When we look at images taken from outdoor scenes, much of the information perceived depends on the lighting conditions. The proposal combines fixed and random extracted points for feature extraction. The describing features are the mean, the standard deviation and the homogeneity (from the co-occurrence matrix) of a sub-image extracted from the three color channels: (H, S, I). A K-MEANS algorithm and a 1-NN classifier are used to build an indexed database of 300 images in order to retrieve images with similar lighting conditions applied on sky regions such as: sunny, partially cloudy and completely cloudy. One of the advantages of the proposal is that we do not need to manually label the images for their retrieval. The performance of our framework is demonstrated through several experimental results, including the improved rates for images retrieval with similar lighting conditions. A comparison with another similar work is also presented.
doi_str_mv 10.1109/ICPR.2010.1062
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5597872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5597872</ieee_id><sourcerecordid>5597872</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f22ce80d5bb0971884c35c7aa08a20e3198604f443f825fd21c35b60aea3f16d3</originalsourceid><addsrcrecordid>eNo1kMtKw1AURa8vMNZOnTjJD6Sec-4zAwcSqgYCSq3jctPctAeatCSx4t8bUUebxYI12ELcIMwQIb3Ls9fFjOAHwdCJmKbWoSKlrFaoTkVETmJiRzwTV_-C6FxECBoTZTReimnfcwlkrLFa60jcv7f9xyF0R-5DFeeN34R4EYaOw9Hv4k8etvEbN7zzXVzwZjtwu4mzfVvxwPu2vxYXtd_1Yfq3E7F8nC-z56R4ecqzhyLhFIakJloHB5UuS0gtOqfWUq-t9-A8QZCYOgOqVkrWjnRdEY6-NOCDlzWaSk7E7W-WQwirQ8eN775WWo8HWJLfL9lMVQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised Image Retrieval with Similar Lighting Conditions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Serrano, J F ; Avilés, C ; Sossa, H ; Villegas, J ; Olague, G</creator><creatorcontrib>Serrano, J F ; Avilés, C ; Sossa, H ; Villegas, J ; Olague, G</creatorcontrib><description>In this work a new method to retrieve images with similar lighting conditions is presented. It is based on automatic clustering and automatic indexing. Our proposal belongs to Content Based Image Retrieval (CBIR) category. The goal is to retrieve from a database, images (by their content) with similar lighting conditions. When we look at images taken from outdoor scenes, much of the information perceived depends on the lighting conditions. The proposal combines fixed and random extracted points for feature extraction. The describing features are the mean, the standard deviation and the homogeneity (from the co-occurrence matrix) of a sub-image extracted from the three color channels: (H, S, I). A K-MEANS algorithm and a 1-NN classifier are used to build an indexed database of 300 images in order to retrieve images with similar lighting conditions applied on sky regions such as: sunny, partially cloudy and completely cloudy. One of the advantages of the proposal is that we do not need to manually label the images for their retrieval. The performance of our framework is demonstrated through several experimental results, including the improved rates for images retrieval with similar lighting conditions. A comparison with another similar work is also presented.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 1424475422</identifier><identifier>ISBN: 9781424475421</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9781424475414</identifier><identifier>EISBN: 9780769541099</identifier><identifier>EISBN: 1424475414</identifier><identifier>EISBN: 0769541097</identifier><identifier>DOI: 10.1109/ICPR.2010.1062</identifier><language>eng</language><publisher>IEEE</publisher><subject>CBIR ; Feature extraction ; Image retrieval ; Indexed database ; K-MEANS ; K-NN ; Lighting ; Proposals ; Support vector machine classification ; Training</subject><ispartof>2010 20th International Conference on Pattern Recognition, 2010, p.4368-4371</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5597872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5597872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Serrano, J F</creatorcontrib><creatorcontrib>Avilés, C</creatorcontrib><creatorcontrib>Sossa, H</creatorcontrib><creatorcontrib>Villegas, J</creatorcontrib><creatorcontrib>Olague, G</creatorcontrib><title>Unsupervised Image Retrieval with Similar Lighting Conditions</title><title>2010 20th International Conference on Pattern Recognition</title><addtitle>ICPR</addtitle><description>In this work a new method to retrieve images with similar lighting conditions is presented. It is based on automatic clustering and automatic indexing. Our proposal belongs to Content Based Image Retrieval (CBIR) category. The goal is to retrieve from a database, images (by their content) with similar lighting conditions. When we look at images taken from outdoor scenes, much of the information perceived depends on the lighting conditions. The proposal combines fixed and random extracted points for feature extraction. The describing features are the mean, the standard deviation and the homogeneity (from the co-occurrence matrix) of a sub-image extracted from the three color channels: (H, S, I). A K-MEANS algorithm and a 1-NN classifier are used to build an indexed database of 300 images in order to retrieve images with similar lighting conditions applied on sky regions such as: sunny, partially cloudy and completely cloudy. One of the advantages of the proposal is that we do not need to manually label the images for their retrieval. The performance of our framework is demonstrated through several experimental results, including the improved rates for images retrieval with similar lighting conditions. A comparison with another similar work is also presented.</description><subject>CBIR</subject><subject>Feature extraction</subject><subject>Image retrieval</subject><subject>Indexed database</subject><subject>K-MEANS</subject><subject>K-NN</subject><subject>Lighting</subject><subject>Proposals</subject><subject>Support vector machine classification</subject><subject>Training</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>1424475422</isbn><isbn>9781424475421</isbn><isbn>9781424475414</isbn><isbn>9780769541099</isbn><isbn>1424475414</isbn><isbn>0769541097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtKw1AURa8vMNZOnTjJD6Sec-4zAwcSqgYCSq3jctPctAeatCSx4t8bUUebxYI12ELcIMwQIb3Ls9fFjOAHwdCJmKbWoSKlrFaoTkVETmJiRzwTV_-C6FxECBoTZTReimnfcwlkrLFa60jcv7f9xyF0R-5DFeeN34R4EYaOw9Hv4k8etvEbN7zzXVzwZjtwu4mzfVvxwPu2vxYXtd_1Yfq3E7F8nC-z56R4ecqzhyLhFIakJloHB5UuS0gtOqfWUq-t9-A8QZCYOgOqVkrWjnRdEY6-NOCDlzWaSk7E7W-WQwirQ8eN775WWo8HWJLfL9lMVQ</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Serrano, J F</creator><creator>Avilés, C</creator><creator>Sossa, H</creator><creator>Villegas, J</creator><creator>Olague, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Unsupervised Image Retrieval with Similar Lighting Conditions</title><author>Serrano, J F ; Avilés, C ; Sossa, H ; Villegas, J ; Olague, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f22ce80d5bb0971884c35c7aa08a20e3198604f443f825fd21c35b60aea3f16d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CBIR</topic><topic>Feature extraction</topic><topic>Image retrieval</topic><topic>Indexed database</topic><topic>K-MEANS</topic><topic>K-NN</topic><topic>Lighting</topic><topic>Proposals</topic><topic>Support vector machine classification</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Serrano, J F</creatorcontrib><creatorcontrib>Avilés, C</creatorcontrib><creatorcontrib>Sossa, H</creatorcontrib><creatorcontrib>Villegas, J</creatorcontrib><creatorcontrib>Olague, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Serrano, J F</au><au>Avilés, C</au><au>Sossa, H</au><au>Villegas, J</au><au>Olague, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised Image Retrieval with Similar Lighting Conditions</atitle><btitle>2010 20th International Conference on Pattern Recognition</btitle><stitle>ICPR</stitle><date>2010-08</date><risdate>2010</risdate><spage>4368</spage><epage>4371</epage><pages>4368-4371</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>1424475422</isbn><isbn>9781424475421</isbn><eisbn>9781424475414</eisbn><eisbn>9780769541099</eisbn><eisbn>1424475414</eisbn><eisbn>0769541097</eisbn><abstract>In this work a new method to retrieve images with similar lighting conditions is presented. It is based on automatic clustering and automatic indexing. Our proposal belongs to Content Based Image Retrieval (CBIR) category. The goal is to retrieve from a database, images (by their content) with similar lighting conditions. When we look at images taken from outdoor scenes, much of the information perceived depends on the lighting conditions. The proposal combines fixed and random extracted points for feature extraction. The describing features are the mean, the standard deviation and the homogeneity (from the co-occurrence matrix) of a sub-image extracted from the three color channels: (H, S, I). A K-MEANS algorithm and a 1-NN classifier are used to build an indexed database of 300 images in order to retrieve images with similar lighting conditions applied on sky regions such as: sunny, partially cloudy and completely cloudy. One of the advantages of the proposal is that we do not need to manually label the images for their retrieval. The performance of our framework is demonstrated through several experimental results, including the improved rates for images retrieval with similar lighting conditions. A comparison with another similar work is also presented.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2010.1062</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 2010 20th International Conference on Pattern Recognition, 2010, p.4368-4371
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_5597872
source IEEE Electronic Library (IEL) Conference Proceedings
subjects CBIR
Feature extraction
Image retrieval
Indexed database
K-MEANS
K-NN
Lighting
Proposals
Support vector machine classification
Training
title Unsupervised Image Retrieval with Similar Lighting Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20Image%20Retrieval%20with%20Similar%20Lighting%20Conditions&rft.btitle=2010%2020th%20International%20Conference%20on%20Pattern%20Recognition&rft.au=Serrano,%20J%20F&rft.date=2010-08&rft.spage=4368&rft.epage=4371&rft.pages=4368-4371&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=1424475422&rft.isbn_list=9781424475421&rft_id=info:doi/10.1109/ICPR.2010.1062&rft.eisbn=9781424475414&rft.eisbn_list=9780769541099&rft.eisbn_list=1424475414&rft.eisbn_list=0769541097&rft_dat=%3Cieee_6IE%3E5597872%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-f22ce80d5bb0971884c35c7aa08a20e3198604f443f825fd21c35b60aea3f16d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5597872&rfr_iscdi=true