Loading…
Embedding a Neural Network into WSN furniture
Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern clas...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 222 |
container_issue | |
container_start_page | 219 |
container_title | |
container_volume | |
creator | Soares, Symone Gomes da Rocha, Adson Ferreira de A. Barbosa, Talles Marcelo G de Matos Araujo, Rui Alexandre |
description | Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC). |
doi_str_mv | 10.1109/HIS.2010.5600016 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5600016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5600016</ieee_id><sourcerecordid>5600016</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1326-86409e29d87ee6bfd763fcbfa3bd2b0bf658caa7990a5d7706aa8ff86281f4e03</originalsourceid><addsrcrecordid>eNpFj81KAzEURiMiqLV7wc28wNSb_2QppdpCqYu2uCw3zY1E26lkZhDf3gELrg4HPg58jN1zmHAO_nG-WE8EDKYNAHBzwW65EkpZabS__Bcprtm4bT-GESgthNc3rJ4dA8WYm_cKqxX1BQ8Duu9T-axy052qt_WqSn1pctcXumNXCQ8tjc8cse3zbDOd18vXl8X0aVlnLoWpnVHgSfjoLJEJKVoj0z4klCGKACEZ7faI1ntAHa0Fg-hSckY4nhSBHLGHv24mot1XyUcsP7vzPfkLTPZCRA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Embedding a Neural Network into WSN furniture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soares, Symone Gomes ; da Rocha, Adson Ferreira ; de A. Barbosa, Talles Marcelo G ; de Matos Araujo, Rui Alexandre</creator><creatorcontrib>Soares, Symone Gomes ; da Rocha, Adson Ferreira ; de A. Barbosa, Talles Marcelo G ; de Matos Araujo, Rui Alexandre</creatorcontrib><description>Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC).</description><identifier>ISBN: 1424473632</identifier><identifier>ISBN: 9781424473632</identifier><identifier>EISBN: 1424473659</identifier><identifier>EISBN: 1424473640</identifier><identifier>EISBN: 9781424473656</identifier><identifier>EISBN: 9781424473649</identifier><identifier>DOI: 10.1109/HIS.2010.5600016</identifier><language>eng</language><publisher>IEEE</publisher><subject>appliance ; Artificial neural networks ; componen ; Computational modeling ; furnure ; Home appliances ; Microcontrollers ; neural network ; Neurons ; sensor network ; smart home ; Training ; Wireless sensor networks ; WSN</subject><ispartof>2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.219-222</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5600016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5600016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, Symone Gomes</creatorcontrib><creatorcontrib>da Rocha, Adson Ferreira</creatorcontrib><creatorcontrib>de A. Barbosa, Talles Marcelo G</creatorcontrib><creatorcontrib>de Matos Araujo, Rui Alexandre</creatorcontrib><title>Embedding a Neural Network into WSN furniture</title><title>2010 10th International Conference on Hybrid Intelligent Systems</title><addtitle>HIS</addtitle><description>Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC).</description><subject>appliance</subject><subject>Artificial neural networks</subject><subject>componen</subject><subject>Computational modeling</subject><subject>furnure</subject><subject>Home appliances</subject><subject>Microcontrollers</subject><subject>neural network</subject><subject>Neurons</subject><subject>sensor network</subject><subject>smart home</subject><subject>Training</subject><subject>Wireless sensor networks</subject><subject>WSN</subject><isbn>1424473632</isbn><isbn>9781424473632</isbn><isbn>1424473659</isbn><isbn>1424473640</isbn><isbn>9781424473656</isbn><isbn>9781424473649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj81KAzEURiMiqLV7wc28wNSb_2QppdpCqYu2uCw3zY1E26lkZhDf3gELrg4HPg58jN1zmHAO_nG-WE8EDKYNAHBzwW65EkpZabS__Bcprtm4bT-GESgthNc3rJ4dA8WYm_cKqxX1BQ8Duu9T-axy052qt_WqSn1pctcXumNXCQ8tjc8cse3zbDOd18vXl8X0aVlnLoWpnVHgSfjoLJEJKVoj0z4klCGKACEZ7faI1ntAHa0Fg-hSckY4nhSBHLGHv24mot1XyUcsP7vzPfkLTPZCRA</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Soares, Symone Gomes</creator><creator>da Rocha, Adson Ferreira</creator><creator>de A. Barbosa, Talles Marcelo G</creator><creator>de Matos Araujo, Rui Alexandre</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Embedding a Neural Network into WSN furniture</title><author>Soares, Symone Gomes ; da Rocha, Adson Ferreira ; de A. Barbosa, Talles Marcelo G ; de Matos Araujo, Rui Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1326-86409e29d87ee6bfd763fcbfa3bd2b0bf658caa7990a5d7706aa8ff86281f4e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>appliance</topic><topic>Artificial neural networks</topic><topic>componen</topic><topic>Computational modeling</topic><topic>furnure</topic><topic>Home appliances</topic><topic>Microcontrollers</topic><topic>neural network</topic><topic>Neurons</topic><topic>sensor network</topic><topic>smart home</topic><topic>Training</topic><topic>Wireless sensor networks</topic><topic>WSN</topic><toplevel>online_resources</toplevel><creatorcontrib>Soares, Symone Gomes</creatorcontrib><creatorcontrib>da Rocha, Adson Ferreira</creatorcontrib><creatorcontrib>de A. Barbosa, Talles Marcelo G</creatorcontrib><creatorcontrib>de Matos Araujo, Rui Alexandre</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, Symone Gomes</au><au>da Rocha, Adson Ferreira</au><au>de A. Barbosa, Talles Marcelo G</au><au>de Matos Araujo, Rui Alexandre</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Embedding a Neural Network into WSN furniture</atitle><btitle>2010 10th International Conference on Hybrid Intelligent Systems</btitle><stitle>HIS</stitle><date>2010-08</date><risdate>2010</risdate><spage>219</spage><epage>222</epage><pages>219-222</pages><isbn>1424473632</isbn><isbn>9781424473632</isbn><eisbn>1424473659</eisbn><eisbn>1424473640</eisbn><eisbn>9781424473656</eisbn><eisbn>9781424473649</eisbn><abstract>Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC).</abstract><pub>IEEE</pub><doi>10.1109/HIS.2010.5600016</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424473632 |
ispartof | 2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.219-222 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5600016 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | appliance Artificial neural networks componen Computational modeling furnure Home appliances Microcontrollers neural network Neurons sensor network smart home Training Wireless sensor networks WSN |
title | Embedding a Neural Network into WSN furniture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Embedding%20a%20Neural%20Network%20into%20WSN%20furniture&rft.btitle=2010%2010th%20International%20Conference%20on%20Hybrid%20Intelligent%20Systems&rft.au=Soares,%20Symone%20Gomes&rft.date=2010-08&rft.spage=219&rft.epage=222&rft.pages=219-222&rft.isbn=1424473632&rft.isbn_list=9781424473632&rft_id=info:doi/10.1109/HIS.2010.5600016&rft.eisbn=1424473659&rft.eisbn_list=1424473640&rft.eisbn_list=9781424473656&rft.eisbn_list=9781424473649&rft_dat=%3Cieee_6IE%3E5600016%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1326-86409e29d87ee6bfd763fcbfa3bd2b0bf658caa7990a5d7706aa8ff86281f4e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5600016&rfr_iscdi=true |