Loading…

Embedding a Neural Network into WSN furniture

Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern clas...

Full description

Saved in:
Bibliographic Details
Main Authors: Soares, Symone Gomes, da Rocha, Adson Ferreira, de A. Barbosa, Talles Marcelo G, de Matos Araujo, Rui Alexandre
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 222
container_issue
container_start_page 219
container_title
container_volume
creator Soares, Symone Gomes
da Rocha, Adson Ferreira
de A. Barbosa, Talles Marcelo G
de Matos Araujo, Rui Alexandre
description Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC).
doi_str_mv 10.1109/HIS.2010.5600016
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5600016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5600016</ieee_id><sourcerecordid>5600016</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1326-86409e29d87ee6bfd763fcbfa3bd2b0bf658caa7990a5d7706aa8ff86281f4e03</originalsourceid><addsrcrecordid>eNpFj81KAzEURiMiqLV7wc28wNSb_2QppdpCqYu2uCw3zY1E26lkZhDf3gELrg4HPg58jN1zmHAO_nG-WE8EDKYNAHBzwW65EkpZabS__Bcprtm4bT-GESgthNc3rJ4dA8WYm_cKqxX1BQ8Duu9T-axy052qt_WqSn1pctcXumNXCQ8tjc8cse3zbDOd18vXl8X0aVlnLoWpnVHgSfjoLJEJKVoj0z4klCGKACEZ7faI1ntAHa0Fg-hSckY4nhSBHLGHv24mot1XyUcsP7vzPfkLTPZCRA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Embedding a Neural Network into WSN furniture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soares, Symone Gomes ; da Rocha, Adson Ferreira ; de A. Barbosa, Talles Marcelo G ; de Matos Araujo, Rui Alexandre</creator><creatorcontrib>Soares, Symone Gomes ; da Rocha, Adson Ferreira ; de A. Barbosa, Talles Marcelo G ; de Matos Araujo, Rui Alexandre</creatorcontrib><description>Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC).</description><identifier>ISBN: 1424473632</identifier><identifier>ISBN: 9781424473632</identifier><identifier>EISBN: 1424473659</identifier><identifier>EISBN: 1424473640</identifier><identifier>EISBN: 9781424473656</identifier><identifier>EISBN: 9781424473649</identifier><identifier>DOI: 10.1109/HIS.2010.5600016</identifier><language>eng</language><publisher>IEEE</publisher><subject>appliance ; Artificial neural networks ; componen ; Computational modeling ; furnure ; Home appliances ; Microcontrollers ; neural network ; Neurons ; sensor network ; smart home ; Training ; Wireless sensor networks ; WSN</subject><ispartof>2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.219-222</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5600016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5600016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, Symone Gomes</creatorcontrib><creatorcontrib>da Rocha, Adson Ferreira</creatorcontrib><creatorcontrib>de A. Barbosa, Talles Marcelo G</creatorcontrib><creatorcontrib>de Matos Araujo, Rui Alexandre</creatorcontrib><title>Embedding a Neural Network into WSN furniture</title><title>2010 10th International Conference on Hybrid Intelligent Systems</title><addtitle>HIS</addtitle><description>Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC).</description><subject>appliance</subject><subject>Artificial neural networks</subject><subject>componen</subject><subject>Computational modeling</subject><subject>furnure</subject><subject>Home appliances</subject><subject>Microcontrollers</subject><subject>neural network</subject><subject>Neurons</subject><subject>sensor network</subject><subject>smart home</subject><subject>Training</subject><subject>Wireless sensor networks</subject><subject>WSN</subject><isbn>1424473632</isbn><isbn>9781424473632</isbn><isbn>1424473659</isbn><isbn>1424473640</isbn><isbn>9781424473656</isbn><isbn>9781424473649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj81KAzEURiMiqLV7wc28wNSb_2QppdpCqYu2uCw3zY1E26lkZhDf3gELrg4HPg58jN1zmHAO_nG-WE8EDKYNAHBzwW65EkpZabS__Bcprtm4bT-GESgthNc3rJ4dA8WYm_cKqxX1BQ8Duu9T-axy052qt_WqSn1pctcXumNXCQ8tjc8cse3zbDOd18vXl8X0aVlnLoWpnVHgSfjoLJEJKVoj0z4klCGKACEZ7faI1ntAHa0Fg-hSckY4nhSBHLGHv24mot1XyUcsP7vzPfkLTPZCRA</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Soares, Symone Gomes</creator><creator>da Rocha, Adson Ferreira</creator><creator>de A. Barbosa, Talles Marcelo G</creator><creator>de Matos Araujo, Rui Alexandre</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Embedding a Neural Network into WSN furniture</title><author>Soares, Symone Gomes ; da Rocha, Adson Ferreira ; de A. Barbosa, Talles Marcelo G ; de Matos Araujo, Rui Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1326-86409e29d87ee6bfd763fcbfa3bd2b0bf658caa7990a5d7706aa8ff86281f4e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>appliance</topic><topic>Artificial neural networks</topic><topic>componen</topic><topic>Computational modeling</topic><topic>furnure</topic><topic>Home appliances</topic><topic>Microcontrollers</topic><topic>neural network</topic><topic>Neurons</topic><topic>sensor network</topic><topic>smart home</topic><topic>Training</topic><topic>Wireless sensor networks</topic><topic>WSN</topic><toplevel>online_resources</toplevel><creatorcontrib>Soares, Symone Gomes</creatorcontrib><creatorcontrib>da Rocha, Adson Ferreira</creatorcontrib><creatorcontrib>de A. Barbosa, Talles Marcelo G</creatorcontrib><creatorcontrib>de Matos Araujo, Rui Alexandre</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, Symone Gomes</au><au>da Rocha, Adson Ferreira</au><au>de A. Barbosa, Talles Marcelo G</au><au>de Matos Araujo, Rui Alexandre</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Embedding a Neural Network into WSN furniture</atitle><btitle>2010 10th International Conference on Hybrid Intelligent Systems</btitle><stitle>HIS</stitle><date>2010-08</date><risdate>2010</risdate><spage>219</spage><epage>222</epage><pages>219-222</pages><isbn>1424473632</isbn><isbn>9781424473632</isbn><eisbn>1424473659</eisbn><eisbn>1424473640</eisbn><eisbn>9781424473656</eisbn><eisbn>9781424473649</eisbn><abstract>Wireless Sensor Networks (WSN) is an emerging technology that is developed with a large number of useful applications. On the other hand, Artificial Neural Networks (ANN) have found many successful applications in nonlinear system and control, digital communication, pattern recognition, pattern classification, etc. There are many similarities between WSN and ANN. For example, the sensor node itself can be seen as a neuron since the WSN application show characteristics such as distributed processing, massive parallelism, adaptively, inherent contextual information processing, fault tolerance and low computation. This paper examines the possibility of embedding ANN and WSN into a Smart Table. Prototypal results have shown that ANN models are good candidates for using it deployed into low cost System-on-a-Chip (SoC).</abstract><pub>IEEE</pub><doi>10.1109/HIS.2010.5600016</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424473632
ispartof 2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.219-222
issn
language eng
recordid cdi_ieee_primary_5600016
source IEEE Electronic Library (IEL) Conference Proceedings
subjects appliance
Artificial neural networks
componen
Computational modeling
furnure
Home appliances
Microcontrollers
neural network
Neurons
sensor network
smart home
Training
Wireless sensor networks
WSN
title Embedding a Neural Network into WSN furniture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Embedding%20a%20Neural%20Network%20into%20WSN%20furniture&rft.btitle=2010%2010th%20International%20Conference%20on%20Hybrid%20Intelligent%20Systems&rft.au=Soares,%20Symone%20Gomes&rft.date=2010-08&rft.spage=219&rft.epage=222&rft.pages=219-222&rft.isbn=1424473632&rft.isbn_list=9781424473632&rft_id=info:doi/10.1109/HIS.2010.5600016&rft.eisbn=1424473659&rft.eisbn_list=1424473640&rft.eisbn_list=9781424473656&rft.eisbn_list=9781424473649&rft_dat=%3Cieee_6IE%3E5600016%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1326-86409e29d87ee6bfd763fcbfa3bd2b0bf658caa7990a5d7706aa8ff86281f4e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5600016&rfr_iscdi=true