Loading…

Hybrid system for a never-ending unsupervised learning

We propose a Hybrid System for dynamic environments, where a "Multiple Neural Networks" system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert netw...

Full description

Saved in:
Bibliographic Details
Main Authors: Dragoni, Aldo Franco, Vallesi, Germano, Baldassarri, Paola
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 190
container_issue
container_start_page 185
container_title
container_volume
creator Dragoni, Aldo Franco
Vallesi, Germano
Baldassarri, Paola
description We propose a Hybrid System for dynamic environments, where a "Multiple Neural Networks" system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net's degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the "Inclusion based" and the "Weighted" one over all the maximally consistent subsets of the global outcome.
doi_str_mv 10.1109/HIS.2010.5601070
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5601070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5601070</ieee_id><sourcerecordid>5601070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-665b345085b24b66a37fbbd45af93dc75d246711c6c25a0b91860542a654ad553</originalsourceid><addsrcrecordid>eNpFj09LAzEUxCNSUGvvgpd8ga35916aoxR1CwUP9l6SzdsSaWNJ2sJ-excsOIcZfnMYGMaepJhLKdxLu_qaKzES4OhW3LAHaZQxViO423_Q6o7Nav0Wowwo5eCeYTuEkiKvQz3Rgfc_hXue6UKloRxT3vFzrucjlUuqFPmefMlj-8gmvd9Xml1zyjbvb5tl26w_P1bL13WTnDg1iBC0AbGAoExA9Nr2IUQDvnc6dhaiMmil7LBT4EVwcoECjPIIxkcAPWXPf7OJiLbHkg6-DNvrTf0LIF5E4w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid system for a never-ending unsupervised learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dragoni, Aldo Franco ; Vallesi, Germano ; Baldassarri, Paola</creator><creatorcontrib>Dragoni, Aldo Franco ; Vallesi, Germano ; Baldassarri, Paola</creatorcontrib><description>We propose a Hybrid System for dynamic environments, where a "Multiple Neural Networks" system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net's degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the "Inclusion based" and the "Weighted" one over all the maximally consistent subsets of the global outcome.</description><identifier>ISBN: 1424473632</identifier><identifier>ISBN: 9781424473632</identifier><identifier>EISBN: 1424473659</identifier><identifier>EISBN: 1424473640</identifier><identifier>EISBN: 9781424473656</identifier><identifier>EISBN: 9781424473649</identifier><identifier>DOI: 10.1109/HIS.2010.5601070</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Bayesian methods ; Face ; Face recognition ; Mouth ; Prototypes ; Reliability</subject><ispartof>2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.185-190</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5601070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5601070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dragoni, Aldo Franco</creatorcontrib><creatorcontrib>Vallesi, Germano</creatorcontrib><creatorcontrib>Baldassarri, Paola</creatorcontrib><title>Hybrid system for a never-ending unsupervised learning</title><title>2010 10th International Conference on Hybrid Intelligent Systems</title><addtitle>HIS</addtitle><description>We propose a Hybrid System for dynamic environments, where a "Multiple Neural Networks" system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net's degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the "Inclusion based" and the "Weighted" one over all the maximally consistent subsets of the global outcome.</description><subject>Artificial neural networks</subject><subject>Bayesian methods</subject><subject>Face</subject><subject>Face recognition</subject><subject>Mouth</subject><subject>Prototypes</subject><subject>Reliability</subject><isbn>1424473632</isbn><isbn>9781424473632</isbn><isbn>1424473659</isbn><isbn>1424473640</isbn><isbn>9781424473656</isbn><isbn>9781424473649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj09LAzEUxCNSUGvvgpd8ga35916aoxR1CwUP9l6SzdsSaWNJ2sJ-excsOIcZfnMYGMaepJhLKdxLu_qaKzES4OhW3LAHaZQxViO423_Q6o7Nav0Wowwo5eCeYTuEkiKvQz3Rgfc_hXue6UKloRxT3vFzrucjlUuqFPmefMlj-8gmvd9Xml1zyjbvb5tl26w_P1bL13WTnDg1iBC0AbGAoExA9Nr2IUQDvnc6dhaiMmil7LBT4EVwcoECjPIIxkcAPWXPf7OJiLbHkg6-DNvrTf0LIF5E4w</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Dragoni, Aldo Franco</creator><creator>Vallesi, Germano</creator><creator>Baldassarri, Paola</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Hybrid system for a never-ending unsupervised learning</title><author>Dragoni, Aldo Franco ; Vallesi, Germano ; Baldassarri, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-665b345085b24b66a37fbbd45af93dc75d246711c6c25a0b91860542a654ad553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Bayesian methods</topic><topic>Face</topic><topic>Face recognition</topic><topic>Mouth</topic><topic>Prototypes</topic><topic>Reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Dragoni, Aldo Franco</creatorcontrib><creatorcontrib>Vallesi, Germano</creatorcontrib><creatorcontrib>Baldassarri, Paola</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dragoni, Aldo Franco</au><au>Vallesi, Germano</au><au>Baldassarri, Paola</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid system for a never-ending unsupervised learning</atitle><btitle>2010 10th International Conference on Hybrid Intelligent Systems</btitle><stitle>HIS</stitle><date>2010-08</date><risdate>2010</risdate><spage>185</spage><epage>190</epage><pages>185-190</pages><isbn>1424473632</isbn><isbn>9781424473632</isbn><eisbn>1424473659</eisbn><eisbn>1424473640</eisbn><eisbn>9781424473656</eisbn><eisbn>9781424473649</eisbn><abstract>We propose a Hybrid System for dynamic environments, where a "Multiple Neural Networks" system works with Bayes Rule. One or more neural nets may no longer be able to properly operate, due to partial changes in some of the characteristics of the individuals. We assume that each expert network has a reliability factor that can be dynamically re-evaluated on the ground of the global recognition operated by the overall group. Since the net's degree of reliability is defined as the probability that the net is giving the desired output, in case of conflicts between the outputs of the various nets the re-evaluation of their degrees of reliability can be simply performed on the basis of the Bayes Rule. The new vector of reliability will be used for making the final choice, by applying two algorithms, the "Inclusion based" and the "Weighted" one over all the maximally consistent subsets of the global outcome.</abstract><pub>IEEE</pub><doi>10.1109/HIS.2010.5601070</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424473632
ispartof 2010 10th International Conference on Hybrid Intelligent Systems, 2010, p.185-190
issn
language eng
recordid cdi_ieee_primary_5601070
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Bayesian methods
Face
Face recognition
Mouth
Prototypes
Reliability
title Hybrid system for a never-ending unsupervised learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20system%20for%20a%20never-ending%20unsupervised%20learning&rft.btitle=2010%2010th%20International%20Conference%20on%20Hybrid%20Intelligent%20Systems&rft.au=Dragoni,%20Aldo%20Franco&rft.date=2010-08&rft.spage=185&rft.epage=190&rft.pages=185-190&rft.isbn=1424473632&rft.isbn_list=9781424473632&rft_id=info:doi/10.1109/HIS.2010.5601070&rft.eisbn=1424473659&rft.eisbn_list=1424473640&rft.eisbn_list=9781424473656&rft.eisbn_list=9781424473649&rft_dat=%3Cieee_6IE%3E5601070%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-665b345085b24b66a37fbbd45af93dc75d246711c6c25a0b91860542a654ad553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5601070&rfr_iscdi=true