Loading…
Multi-granular Time-Based Sliding Windows over Data Streams
We introduce a multi-level window operator that concurrently spans temporal extents of increasing granularity over a streaming dataset. This windowing construct is inherently sliding with time, essentially providing at each granularity a varying, but always finite portion of the most recent stream i...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a multi-level window operator that concurrently spans temporal extents of increasing granularity over a streaming dataset. This windowing construct is inherently sliding with time, essentially providing at each granularity a varying, but always finite portion of the most recent stream items. After a careful algebraic formulation of its semantics, we investigate interesting properties and suggest a suitable data structure that can efficiently maintain tuples qualifying for each granular level. Moreover, we propose techniques for evaluating advanced continuous requests against multiple time horizons, achieving near real-time response at reduced overhead. Finally, this framework is empirically validated against streaming data, offering concrete evidence of its benefits to online stream processing. |
---|---|
ISSN: | 1530-1311 2332-6468 |
DOI: | 10.1109/TIME.2010.14 |