Loading…
H2 model reduction using an algebraic approach
This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the ap...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2708 |
container_issue | |
container_start_page | 2705 |
container_title | |
container_volume | |
creator | Kanno, Masaaki |
description | This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5602329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5602329</ieee_id><sourcerecordid>5602329</sourcerecordid><originalsourceid>FETCH-ieee_primary_56023293</originalsourceid><addsrcrecordid>eNpjZOC1NLcwsTQwNzczMTYzYQbzDU2MTEyAAkYWHAy8xcVZBkBgYmpkYG7IyaDnYaSQm5-SmqNQlJpSmlySmZ-nUFqcmZeukJinkJiTnppUlJiZrJBYUFCUn5icwcPAmpaYU5zKC6W5GaTdXEOcPXQzU1NT4wuKMnMTiyrjTc0MjIyNLI3xywIA7SUvsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>H2 model reduction using an algebraic approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kanno, Masaaki</creator><creatorcontrib>Kanno, Masaaki</creatorcontrib><description>This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach.</description><identifier>ISBN: 9781424476428</identifier><identifier>ISBN: 1424476429</identifier><identifier>EISBN: 9784907764364</identifier><identifier>EISBN: 9784907764357</identifier><identifier>EISBN: 4907764367</identifier><identifier>EISBN: 4907764359</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Gröbner bases ; H2-norm ; linear dynamical systems ; Linear systems ; Mathematical model ; Polynomials ; Reduced order systems ; Shape</subject><ispartof>Proceedings of SICE Annual Conference 2010, 2010, p.2705-2708</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5602329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5602329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kanno, Masaaki</creatorcontrib><title>H2 model reduction using an algebraic approach</title><title>Proceedings of SICE Annual Conference 2010</title><addtitle>SICE</addtitle><description>This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach.</description><subject>Approximation methods</subject><subject>Gröbner bases</subject><subject>H2-norm</subject><subject>linear dynamical systems</subject><subject>Linear systems</subject><subject>Mathematical model</subject><subject>Polynomials</subject><subject>Reduced order systems</subject><subject>Shape</subject><isbn>9781424476428</isbn><isbn>1424476429</isbn><isbn>9784907764364</isbn><isbn>9784907764357</isbn><isbn>4907764367</isbn><isbn>4907764359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpjZOC1NLcwsTQwNzczMTYzYQbzDU2MTEyAAkYWHAy8xcVZBkBgYmpkYG7IyaDnYaSQm5-SmqNQlJpSmlySmZ-nUFqcmZeukJinkJiTnppUlJiZrJBYUFCUn5icwcPAmpaYU5zKC6W5GaTdXEOcPXQzU1NT4wuKMnMTiyrjTc0MjIyNLI3xywIA7SUvsg</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kanno, Masaaki</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>H2 model reduction using an algebraic approach</title><author>Kanno, Masaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_56023293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation methods</topic><topic>Gröbner bases</topic><topic>H2-norm</topic><topic>linear dynamical systems</topic><topic>Linear systems</topic><topic>Mathematical model</topic><topic>Polynomials</topic><topic>Reduced order systems</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Kanno, Masaaki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kanno, Masaaki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>H2 model reduction using an algebraic approach</atitle><btitle>Proceedings of SICE Annual Conference 2010</btitle><stitle>SICE</stitle><date>2010-08</date><risdate>2010</risdate><spage>2705</spage><epage>2708</epage><pages>2705-2708</pages><isbn>9781424476428</isbn><isbn>1424476429</isbn><eisbn>9784907764364</eisbn><eisbn>9784907764357</eisbn><eisbn>4907764367</eisbn><eisbn>4907764359</eisbn><abstract>This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424476428 |
ispartof | Proceedings of SICE Annual Conference 2010, 2010, p.2705-2708 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5602329 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Gröbner bases H2-norm linear dynamical systems Linear systems Mathematical model Polynomials Reduced order systems Shape |
title | H2 model reduction using an algebraic approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=H2%20model%20reduction%20using%20an%20algebraic%20approach&rft.btitle=Proceedings%20of%20SICE%20Annual%20Conference%202010&rft.au=Kanno,%20Masaaki&rft.date=2010-08&rft.spage=2705&rft.epage=2708&rft.pages=2705-2708&rft.isbn=9781424476428&rft.isbn_list=1424476429&rft_id=info:doi/&rft.eisbn=9784907764364&rft.eisbn_list=9784907764357&rft.eisbn_list=4907764367&rft.eisbn_list=4907764359&rft_dat=%3Cieee_6IE%3E5602329%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_56023293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5602329&rfr_iscdi=true |