Loading…

H2 model reduction using an algebraic approach

This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the ap...

Full description

Saved in:
Bibliographic Details
Main Author: Kanno, Masaaki
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2708
container_issue
container_start_page 2705
container_title
container_volume
creator Kanno, Masaaki
description This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5602329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5602329</ieee_id><sourcerecordid>5602329</sourcerecordid><originalsourceid>FETCH-ieee_primary_56023293</originalsourceid><addsrcrecordid>eNpjZOC1NLcwsTQwNzczMTYzYQbzDU2MTEyAAkYWHAy8xcVZBkBgYmpkYG7IyaDnYaSQm5-SmqNQlJpSmlySmZ-nUFqcmZeukJinkJiTnppUlJiZrJBYUFCUn5icwcPAmpaYU5zKC6W5GaTdXEOcPXQzU1NT4wuKMnMTiyrjTc0MjIyNLI3xywIA7SUvsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>H2 model reduction using an algebraic approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kanno, Masaaki</creator><creatorcontrib>Kanno, Masaaki</creatorcontrib><description>This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach.</description><identifier>ISBN: 9781424476428</identifier><identifier>ISBN: 1424476429</identifier><identifier>EISBN: 9784907764364</identifier><identifier>EISBN: 9784907764357</identifier><identifier>EISBN: 4907764367</identifier><identifier>EISBN: 4907764359</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Gröbner bases ; H2-norm ; linear dynamical systems ; Linear systems ; Mathematical model ; Polynomials ; Reduced order systems ; Shape</subject><ispartof>Proceedings of SICE Annual Conference 2010, 2010, p.2705-2708</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5602329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5602329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kanno, Masaaki</creatorcontrib><title>H2 model reduction using an algebraic approach</title><title>Proceedings of SICE Annual Conference 2010</title><addtitle>SICE</addtitle><description>This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach.</description><subject>Approximation methods</subject><subject>Gröbner bases</subject><subject>H2-norm</subject><subject>linear dynamical systems</subject><subject>Linear systems</subject><subject>Mathematical model</subject><subject>Polynomials</subject><subject>Reduced order systems</subject><subject>Shape</subject><isbn>9781424476428</isbn><isbn>1424476429</isbn><isbn>9784907764364</isbn><isbn>9784907764357</isbn><isbn>4907764367</isbn><isbn>4907764359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpjZOC1NLcwsTQwNzczMTYzYQbzDU2MTEyAAkYWHAy8xcVZBkBgYmpkYG7IyaDnYaSQm5-SmqNQlJpSmlySmZ-nUFqcmZeukJinkJiTnppUlJiZrJBYUFCUn5icwcPAmpaYU5zKC6W5GaTdXEOcPXQzU1NT4wuKMnMTiyrjTc0MjIyNLI3xywIA7SUvsg</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Kanno, Masaaki</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>H2 model reduction using an algebraic approach</title><author>Kanno, Masaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_56023293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation methods</topic><topic>Gröbner bases</topic><topic>H2-norm</topic><topic>linear dynamical systems</topic><topic>Linear systems</topic><topic>Mathematical model</topic><topic>Polynomials</topic><topic>Reduced order systems</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Kanno, Masaaki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kanno, Masaaki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>H2 model reduction using an algebraic approach</atitle><btitle>Proceedings of SICE Annual Conference 2010</btitle><stitle>SICE</stitle><date>2010-08</date><risdate>2010</risdate><spage>2705</spage><epage>2708</epage><pages>2705-2708</pages><isbn>9781424476428</isbn><isbn>1424476429</isbn><eisbn>9784907764364</eisbn><eisbn>9784907764357</eisbn><eisbn>4907764367</eisbn><eisbn>4907764359</eisbn><abstract>This paper proposes a solution approach to the H 2 model reduction problem based on an algebraic method called Gröbner bases. In the proposed approach, a necessary optimality condition is reduced to a set of algebraic equations in terms of the coefficients of the characteristic polynomial of the approximant and an axillary polynomial. Then, all the solutions yielding candidate approximants are computed by means of Gröbner bases, and the optimal approximant which is a real stable system minimizing the H 2 error is chosen from all the candidates. Numerical examples are given to demonstrate the suggested approach.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424476428
ispartof Proceedings of SICE Annual Conference 2010, 2010, p.2705-2708
issn
language eng
recordid cdi_ieee_primary_5602329
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Gröbner bases
H2-norm
linear dynamical systems
Linear systems
Mathematical model
Polynomials
Reduced order systems
Shape
title H2 model reduction using an algebraic approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=H2%20model%20reduction%20using%20an%20algebraic%20approach&rft.btitle=Proceedings%20of%20SICE%20Annual%20Conference%202010&rft.au=Kanno,%20Masaaki&rft.date=2010-08&rft.spage=2705&rft.epage=2708&rft.pages=2705-2708&rft.isbn=9781424476428&rft.isbn_list=1424476429&rft_id=info:doi/&rft.eisbn=9784907764364&rft.eisbn_list=9784907764357&rft.eisbn_list=4907764367&rft.eisbn_list=4907764359&rft_dat=%3Cieee_6IE%3E5602329%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_56023293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5602329&rfr_iscdi=true