Loading…

Skeletonizing by compressed line adjacency graph in two directions

Now all the block based skeletonizing algorithms only use the compressed line adjacency graph scanned in one direction. For lines approximately parallel to the scan direction, there is difficulty extracting the skeleton because such a line may be separated into several graph nodes or mixed with some...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Xingyuan, Oh Weon-Geun, Hong Jiarong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 20 vol.3
container_issue
container_start_page 17
container_title
container_volume 3
creator Li Xingyuan
Oh Weon-Geun
Hong Jiarong
description Now all the block based skeletonizing algorithms only use the compressed line adjacency graph scanned in one direction. For lines approximately parallel to the scan direction, there is difficulty extracting the skeleton because such a line may be separated into several graph nodes or mixed with some pixels of other lines in the intersection point. In this paper, we propose a new skeletonizing method by combining c-LAG of horizontal and vertical direction. The main idea of the method is a rule for the skeletons in horizontal and vertical direction c-LAG and knowledge based node validation. The validation makes full use of global information in the image. It has been tested on a large amount of characters and high quality achieved.
doi_str_mv 10.1109/ICIP.1996.560358
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_560358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>560358</ieee_id><sourcerecordid>560358</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-ad3e2a276c1cedd37320a8f08381255c4275b1039f6e6f7416214448884971033</originalsourceid><addsrcrecordid>eNotj0tLw0AYRQdEUGr24mr-QOK8H0sNPgIFhdZ1mc58qVPTScgEJP56A-3lwoG7OHARuqekopTYx6ZuPitqraqkIlyaK1RYbchSzpm09AYVOR_JEiElM-QWPW9-oIOpT_EvpgPez9j3p2GEnCHgLibALhydh-RnfBjd8I1jwtNvj0McwU-xT_kOXbeuy1BcuEJfry_b-r1cf7w19dO6jJSIqXSBA3NMK089hMA1Z8SZlhhuKJPSC6blnhJuWwWq1YIqRoUQxhhh9bLzFXo4eyMA7IYxntw4785H-T_NrEeF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Skeletonizing by compressed line adjacency graph in two directions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Xingyuan ; Oh Weon-Geun ; Hong Jiarong</creator><creatorcontrib>Li Xingyuan ; Oh Weon-Geun ; Hong Jiarong</creatorcontrib><description>Now all the block based skeletonizing algorithms only use the compressed line adjacency graph scanned in one direction. For lines approximately parallel to the scan direction, there is difficulty extracting the skeleton because such a line may be separated into several graph nodes or mixed with some pixels of other lines in the intersection point. In this paper, we propose a new skeletonizing method by combining c-LAG of horizontal and vertical direction. The main idea of the method is a rule for the skeletons in horizontal and vertical direction c-LAG and knowledge based node validation. The validation makes full use of global information in the image. It has been tested on a large amount of characters and high quality achieved.</description><identifier>ISBN: 9780780332591</identifier><identifier>ISBN: 0780332598</identifier><identifier>DOI: 10.1109/ICIP.1996.560358</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer science ; Image coding ; Image segmentation ; Partitioning algorithms ; Pixel ; Skeleton ; Systems engineering and theory ; Testing ; Topology</subject><ispartof>Proceedings of 3rd IEEE International Conference on Image Processing, 1996, Vol.3, p.17-20 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/560358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/560358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Xingyuan</creatorcontrib><creatorcontrib>Oh Weon-Geun</creatorcontrib><creatorcontrib>Hong Jiarong</creatorcontrib><title>Skeletonizing by compressed line adjacency graph in two directions</title><title>Proceedings of 3rd IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Now all the block based skeletonizing algorithms only use the compressed line adjacency graph scanned in one direction. For lines approximately parallel to the scan direction, there is difficulty extracting the skeleton because such a line may be separated into several graph nodes or mixed with some pixels of other lines in the intersection point. In this paper, we propose a new skeletonizing method by combining c-LAG of horizontal and vertical direction. The main idea of the method is a rule for the skeletons in horizontal and vertical direction c-LAG and knowledge based node validation. The validation makes full use of global information in the image. It has been tested on a large amount of characters and high quality achieved.</description><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Image coding</subject><subject>Image segmentation</subject><subject>Partitioning algorithms</subject><subject>Pixel</subject><subject>Skeleton</subject><subject>Systems engineering and theory</subject><subject>Testing</subject><subject>Topology</subject><isbn>9780780332591</isbn><isbn>0780332598</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLw0AYRQdEUGr24mr-QOK8H0sNPgIFhdZ1mc58qVPTScgEJP56A-3lwoG7OHARuqekopTYx6ZuPitqraqkIlyaK1RYbchSzpm09AYVOR_JEiElM-QWPW9-oIOpT_EvpgPez9j3p2GEnCHgLibALhydh-RnfBjd8I1jwtNvj0McwU-xT_kOXbeuy1BcuEJfry_b-r1cf7w19dO6jJSIqXSBA3NMK089hMA1Z8SZlhhuKJPSC6blnhJuWwWq1YIqRoUQxhhh9bLzFXo4eyMA7IYxntw4785H-T_NrEeF</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Li Xingyuan</creator><creator>Oh Weon-Geun</creator><creator>Hong Jiarong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Skeletonizing by compressed line adjacency graph in two directions</title><author>Li Xingyuan ; Oh Weon-Geun ; Hong Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-ad3e2a276c1cedd37320a8f08381255c4275b1039f6e6f7416214448884971033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Image coding</topic><topic>Image segmentation</topic><topic>Partitioning algorithms</topic><topic>Pixel</topic><topic>Skeleton</topic><topic>Systems engineering and theory</topic><topic>Testing</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Xingyuan</creatorcontrib><creatorcontrib>Oh Weon-Geun</creatorcontrib><creatorcontrib>Hong Jiarong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Xingyuan</au><au>Oh Weon-Geun</au><au>Hong Jiarong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Skeletonizing by compressed line adjacency graph in two directions</atitle><btitle>Proceedings of 3rd IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>1996</date><risdate>1996</risdate><volume>3</volume><spage>17</spage><epage>20 vol.3</epage><pages>17-20 vol.3</pages><isbn>9780780332591</isbn><isbn>0780332598</isbn><abstract>Now all the block based skeletonizing algorithms only use the compressed line adjacency graph scanned in one direction. For lines approximately parallel to the scan direction, there is difficulty extracting the skeleton because such a line may be separated into several graph nodes or mixed with some pixels of other lines in the intersection point. In this paper, we propose a new skeletonizing method by combining c-LAG of horizontal and vertical direction. The main idea of the method is a rule for the skeletons in horizontal and vertical direction c-LAG and knowledge based node validation. The validation makes full use of global information in the image. It has been tested on a large amount of characters and high quality achieved.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.1996.560358</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780332591
ispartof Proceedings of 3rd IEEE International Conference on Image Processing, 1996, Vol.3, p.17-20 vol.3
issn
language eng
recordid cdi_ieee_primary_560358
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Computer science
Image coding
Image segmentation
Partitioning algorithms
Pixel
Skeleton
Systems engineering and theory
Testing
Topology
title Skeletonizing by compressed line adjacency graph in two directions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Skeletonizing%20by%20compressed%20line%20adjacency%20graph%20in%20two%20directions&rft.btitle=Proceedings%20of%203rd%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Li%20Xingyuan&rft.date=1996&rft.volume=3&rft.spage=17&rft.epage=20%20vol.3&rft.pages=17-20%20vol.3&rft.isbn=9780780332591&rft.isbn_list=0780332598&rft_id=info:doi/10.1109/ICIP.1996.560358&rft_dat=%3Cieee_6IE%3E560358%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-ad3e2a276c1cedd37320a8f08381255c4275b1039f6e6f7416214448884971033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=560358&rfr_iscdi=true