Loading…

Attribute-oriented induction using domain generalization graphs

Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing specific attribute values with more general concepts according to user-defined concept hierarchies. We show how domain generalization graphs can be constructed from multiple concept hierarchies a...

Full description

Saved in:
Bibliographic Details
Main Authors: Hamilton, H.J., Hilderman, R.J., Cercone, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 253
container_issue
container_start_page 246
container_title
container_volume
creator Hamilton, H.J.
Hilderman, R.J.
Cercone, N.
description Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing specific attribute values with more general concepts according to user-defined concept hierarchies. We show how domain generalization graphs can be constructed from multiple concept hierarchies associated with an attribute, describe how these graphs can be used to control the generalization of a set of attributes, and present the Multi-Attribute Generalization algorithm for attribute-oriented induction using domain generalization graphs. Based upon a generate-and-test approach, the algorithm generates all possible combinations of nodes from the domain generalization graphs associated with the individual attributes, to produce all possible generalized relations for the set of attributes. We rant the interestingness of the resulting generalized relations using measures based upon relative entropy and variance. Our experiments show that these measures provide a basis for analyzing summary data from relational databases. Variance appears more useful because it tends to rank the less complex generalized relations (i.e., those with few attributes and/or few tuples) as more interesting.
doi_str_mv 10.1109/TAI.1996.560458
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_560458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>560458</ieee_id><sourcerecordid>560458</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-aa49ecd421a2072181700e2d1331ef8669b56fffcef6e0809f7d650a821672593</originalsourceid><addsrcrecordid>eNotj0tLw0AURgcfYFtdC67yBybeO5N5rSQUq4WCm7ou0-ROHGmTMpks9Ncr1sXHWRw48DF2j1Aignvc1usSndOl0lApe8FmQhrFAZ25ZHOwaLXRv7tiMwQruKzA3bD5OH4CCFBCzthTnXOK-ykTH1KkPlNbxL6dmhyHvpjG2HdFOxx97IuOekr-EL_9n-uSP32Mt-w6-MNId_9csPfV83b5yjdvL-tlveERocrc-8pR01YCvQAj0KIBINGilEjBau32SocQGgqawIILptUKvBWojVBOLtjDuRuJaHdK8ejT1-78W_4AqrZKGQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Attribute-oriented induction using domain generalization graphs</title><source>IEEE Xplore All Conference Series</source><creator>Hamilton, H.J. ; Hilderman, R.J. ; Cercone, N.</creator><creatorcontrib>Hamilton, H.J. ; Hilderman, R.J. ; Cercone, N.</creatorcontrib><description>Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing specific attribute values with more general concepts according to user-defined concept hierarchies. We show how domain generalization graphs can be constructed from multiple concept hierarchies associated with an attribute, describe how these graphs can be used to control the generalization of a set of attributes, and present the Multi-Attribute Generalization algorithm for attribute-oriented induction using domain generalization graphs. Based upon a generate-and-test approach, the algorithm generates all possible combinations of nodes from the domain generalization graphs associated with the individual attributes, to produce all possible generalized relations for the set of attributes. We rant the interestingness of the resulting generalized relations using measures based upon relative entropy and variance. Our experiments show that these measures provide a basis for analyzing summary data from relational databases. Variance appears more useful because it tends to rank the less complex generalized relations (i.e., those with few attributes and/or few tuples) as more interesting.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 0818676867</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/TAI.1996.560458</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification tree analysis ; Computer science ; Data analysis ; Decision trees ; Entropy ; Frequency ; Global Positioning System ; Marketing and sales ; Partitioning algorithms ; Relational databases</subject><ispartof>Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence, 1996, p.246-253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/560458$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,4036,4037,23908,23909,25117,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/560458$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Hilderman, R.J.</creatorcontrib><creatorcontrib>Cercone, N.</creatorcontrib><title>Attribute-oriented induction using domain generalization graphs</title><title>Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing specific attribute values with more general concepts according to user-defined concept hierarchies. We show how domain generalization graphs can be constructed from multiple concept hierarchies associated with an attribute, describe how these graphs can be used to control the generalization of a set of attributes, and present the Multi-Attribute Generalization algorithm for attribute-oriented induction using domain generalization graphs. Based upon a generate-and-test approach, the algorithm generates all possible combinations of nodes from the domain generalization graphs associated with the individual attributes, to produce all possible generalized relations for the set of attributes. We rant the interestingness of the resulting generalized relations using measures based upon relative entropy and variance. Our experiments show that these measures provide a basis for analyzing summary data from relational databases. Variance appears more useful because it tends to rank the less complex generalized relations (i.e., those with few attributes and/or few tuples) as more interesting.</description><subject>Classification tree analysis</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Decision trees</subject><subject>Entropy</subject><subject>Frequency</subject><subject>Global Positioning System</subject><subject>Marketing and sales</subject><subject>Partitioning algorithms</subject><subject>Relational databases</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>0818676867</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLw0AURgcfYFtdC67yBybeO5N5rSQUq4WCm7ou0-ROHGmTMpks9Ncr1sXHWRw48DF2j1Aignvc1usSndOl0lApe8FmQhrFAZ25ZHOwaLXRv7tiMwQruKzA3bD5OH4CCFBCzthTnXOK-ykTH1KkPlNbxL6dmhyHvpjG2HdFOxx97IuOekr-EL_9n-uSP32Mt-w6-MNId_9csPfV83b5yjdvL-tlveERocrc-8pR01YCvQAj0KIBINGilEjBau32SocQGgqawIILptUKvBWojVBOLtjDuRuJaHdK8ejT1-78W_4AqrZKGQ</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Hamilton, H.J.</creator><creator>Hilderman, R.J.</creator><creator>Cercone, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Attribute-oriented induction using domain generalization graphs</title><author>Hamilton, H.J. ; Hilderman, R.J. ; Cercone, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-aa49ecd421a2072181700e2d1331ef8669b56fffcef6e0809f7d650a821672593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Classification tree analysis</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Decision trees</topic><topic>Entropy</topic><topic>Frequency</topic><topic>Global Positioning System</topic><topic>Marketing and sales</topic><topic>Partitioning algorithms</topic><topic>Relational databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Hilderman, R.J.</creatorcontrib><creatorcontrib>Cercone, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamilton, H.J.</au><au>Hilderman, R.J.</au><au>Cercone, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Attribute-oriented induction using domain generalization graphs</atitle><btitle>Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>1996</date><risdate>1996</risdate><spage>246</spage><epage>253</epage><pages>246-253</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>0818676867</isbn><abstract>Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing specific attribute values with more general concepts according to user-defined concept hierarchies. We show how domain generalization graphs can be constructed from multiple concept hierarchies associated with an attribute, describe how these graphs can be used to control the generalization of a set of attributes, and present the Multi-Attribute Generalization algorithm for attribute-oriented induction using domain generalization graphs. Based upon a generate-and-test approach, the algorithm generates all possible combinations of nodes from the domain generalization graphs associated with the individual attributes, to produce all possible generalized relations for the set of attributes. We rant the interestingness of the resulting generalized relations using measures based upon relative entropy and variance. Our experiments show that these measures provide a basis for analyzing summary data from relational databases. Variance appears more useful because it tends to rank the less complex generalized relations (i.e., those with few attributes and/or few tuples) as more interesting.</abstract><pub>IEEE</pub><doi>10.1109/TAI.1996.560458</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence, 1996, p.246-253
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_560458
source IEEE Xplore All Conference Series
subjects Classification tree analysis
Computer science
Data analysis
Decision trees
Entropy
Frequency
Global Positioning System
Marketing and sales
Partitioning algorithms
Relational databases
title Attribute-oriented induction using domain generalization graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Attribute-oriented%20induction%20using%20domain%20generalization%20graphs&rft.btitle=Proceedings%20Eighth%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Hamilton,%20H.J.&rft.date=1996&rft.spage=246&rft.epage=253&rft.pages=246-253&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=0818676867&rft_id=info:doi/10.1109/TAI.1996.560458&rft_dat=%3Cieee_CHZPO%3E560458%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-aa49ecd421a2072181700e2d1331ef8669b56fffcef6e0809f7d650a821672593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=560458&rfr_iscdi=true