Loading…

Individual Neighbourhood Exploration in Complex Multi-layered Social Network

Social networks can be extracted from different data about communication or common activities in organizations, companies or various Internet-based services. Different types of data processed may result in creation of separate layers in the complex multilayered social network. Analysis of neighbourh...

Full description

Saved in:
Bibliographic Details
Main Authors: Kazienko, Przemyslaw, Brodka, Piotr, Musial, Katarzyna
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a2493-5ee67043229858f5ec0ec3e7fc055ca1572129fb1f7f1dc4545bf4ff85b7d2bb3
cites
container_end_page 8
container_issue
container_start_page 5
container_title
container_volume 3
creator Kazienko, Przemyslaw
Brodka, Piotr
Musial, Katarzyna
description Social networks can be extracted from different data about communication or common activities in organizations, companies or various Internet-based services. Different types of data processed may result in creation of separate layers in the complex multilayered social network. Analysis of neighbourhoods of network members and their utilization to social group discovery appears to be an interesting and important research domain. Since there is no measure to evaluate structure of the neighbourhoods in the multilayered social network, a new measure called cross layered multi-layered clustering coefficient (CLMCC) is proposed in the paper. It enables to analyse the density of mutual connections of neighbours that occur in at least a given number of layers in a social network. Additionally, experimental studies on real world data are presented.
doi_str_mv 10.1109/WI-IAT.2010.313
format conference_proceeding
fullrecord <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_ieee_primary_5614795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5614795</ieee_id><sourcerecordid>acm_books_10_1109_WI_IAT_2010_313</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2493-5ee67043229858f5ec0ec3e7fc055ca1572129fb1f7f1dc4545bf4ff85b7d2bb3</originalsourceid><addsrcrecordid>eNqNkD1PwzAURY0QEgg6M7BkZEnx80cdj1VVIFKBgaKOlu08U9O0rpIW2n9PSpmYmJ7uuzp3OIRcA-0DUH03K_NyOO0z2j048BPS06qgaqClAA3i9E8-J722_aCUAjAqZHFBJuWqip-x2to6e8b4Pndp28xTqrLxbl2nxm5iWmVxlY3Scl3jLnva1puY13aPDVbZa_Lxh9x8pWZxRc6CrVvs_d5L8nY_no4e88nLQzkaTnLLhOa5RBwoKjhjupBFkOgpeo4qeCqltyAVA6aDg6ACVF5IIV0QIRTSqYo5xy_JzXE3IqJZN3Fpm72RAxBKy67tH1vrl8altGgNUHPQZWal6XSZgy7T6TKuiRg64PafAP8G_Hdp8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Individual Neighbourhood Exploration in Complex Multi-layered Social Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kazienko, Przemyslaw ; Brodka, Piotr ; Musial, Katarzyna</creator><creatorcontrib>Kazienko, Przemyslaw ; Brodka, Piotr ; Musial, Katarzyna</creatorcontrib><description>Social networks can be extracted from different data about communication or common activities in organizations, companies or various Internet-based services. Different types of data processed may result in creation of separate layers in the complex multilayered social network. Analysis of neighbourhoods of network members and their utilization to social group discovery appears to be an interesting and important research domain. Since there is no measure to evaluate structure of the neighbourhoods in the multilayered social network, a new measure called cross layered multi-layered clustering coefficient (CLMCC) is proposed in the paper. It enables to analyse the density of mutual connections of neighbours that occur in at least a given number of layers in a social network. Additionally, experimental studies on real world data are presented.</description><identifier>ISBN: 9780769541914</identifier><identifier>ISBN: 0769541917</identifier><identifier>ISBN: 9781424484829</identifier><identifier>ISBN: 1424484820</identifier><identifier>EISBN: 9780769541914</identifier><identifier>EISBN: 0769541917</identifier><identifier>DOI: 10.1109/WI-IAT.2010.313</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Communication channels ; Complex networks ; Cross layer design ; Fitting ; Mathematics of computing ; Mathematics of computing -- Discrete mathematics ; Mathematics of computing -- Discrete mathematics -- Graph theory ; Mathematics of computing -- Discrete mathematics -- Graph theory -- Network flows ; Measurement ; multi-layered social network ; neighbourhood analysis ; Presses ; social network analysis ; Social network services</subject><ispartof>2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2010, Vol.3, p.5-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2493-5ee67043229858f5ec0ec3e7fc055ca1572129fb1f7f1dc4545bf4ff85b7d2bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5614795$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5614795$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kazienko, Przemyslaw</creatorcontrib><creatorcontrib>Brodka, Piotr</creatorcontrib><creatorcontrib>Musial, Katarzyna</creatorcontrib><title>Individual Neighbourhood Exploration in Complex Multi-layered Social Network</title><title>2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</title><addtitle>wi-iat</addtitle><description>Social networks can be extracted from different data about communication or common activities in organizations, companies or various Internet-based services. Different types of data processed may result in creation of separate layers in the complex multilayered social network. Analysis of neighbourhoods of network members and their utilization to social group discovery appears to be an interesting and important research domain. Since there is no measure to evaluate structure of the neighbourhoods in the multilayered social network, a new measure called cross layered multi-layered clustering coefficient (CLMCC) is proposed in the paper. It enables to analyse the density of mutual connections of neighbours that occur in at least a given number of layers in a social network. Additionally, experimental studies on real world data are presented.</description><subject>Communication channels</subject><subject>Complex networks</subject><subject>Cross layer design</subject><subject>Fitting</subject><subject>Mathematics of computing</subject><subject>Mathematics of computing -- Discrete mathematics</subject><subject>Mathematics of computing -- Discrete mathematics -- Graph theory</subject><subject>Mathematics of computing -- Discrete mathematics -- Graph theory -- Network flows</subject><subject>Measurement</subject><subject>multi-layered social network</subject><subject>neighbourhood analysis</subject><subject>Presses</subject><subject>social network analysis</subject><subject>Social network services</subject><isbn>9780769541914</isbn><isbn>0769541917</isbn><isbn>9781424484829</isbn><isbn>1424484820</isbn><isbn>9780769541914</isbn><isbn>0769541917</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNkD1PwzAURY0QEgg6M7BkZEnx80cdj1VVIFKBgaKOlu08U9O0rpIW2n9PSpmYmJ7uuzp3OIRcA-0DUH03K_NyOO0z2j048BPS06qgaqClAA3i9E8-J722_aCUAjAqZHFBJuWqip-x2to6e8b4Pndp28xTqrLxbl2nxm5iWmVxlY3Scl3jLnva1puY13aPDVbZa_Lxh9x8pWZxRc6CrVvs_d5L8nY_no4e88nLQzkaTnLLhOa5RBwoKjhjupBFkOgpeo4qeCqltyAVA6aDg6ACVF5IIV0QIRTSqYo5xy_JzXE3IqJZN3Fpm72RAxBKy67tH1vrl8altGgNUHPQZWal6XSZgy7T6TKuiRg64PafAP8G_Hdp8A</recordid><startdate>20100831</startdate><enddate>20100831</enddate><creator>Kazienko, Przemyslaw</creator><creator>Brodka, Piotr</creator><creator>Musial, Katarzyna</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20100831</creationdate><title>Individual Neighbourhood Exploration in Complex Multi-layered Social Network</title><author>Kazienko, Przemyslaw ; Brodka, Piotr ; Musial, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2493-5ee67043229858f5ec0ec3e7fc055ca1572129fb1f7f1dc4545bf4ff85b7d2bb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Communication channels</topic><topic>Complex networks</topic><topic>Cross layer design</topic><topic>Fitting</topic><topic>Mathematics of computing</topic><topic>Mathematics of computing -- Discrete mathematics</topic><topic>Mathematics of computing -- Discrete mathematics -- Graph theory</topic><topic>Mathematics of computing -- Discrete mathematics -- Graph theory -- Network flows</topic><topic>Measurement</topic><topic>multi-layered social network</topic><topic>neighbourhood analysis</topic><topic>Presses</topic><topic>social network analysis</topic><topic>Social network services</topic><toplevel>online_resources</toplevel><creatorcontrib>Kazienko, Przemyslaw</creatorcontrib><creatorcontrib>Brodka, Piotr</creatorcontrib><creatorcontrib>Musial, Katarzyna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kazienko, Przemyslaw</au><au>Brodka, Piotr</au><au>Musial, Katarzyna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Individual Neighbourhood Exploration in Complex Multi-layered Social Network</atitle><btitle>2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology</btitle><stitle>wi-iat</stitle><date>2010-08-31</date><risdate>2010</risdate><volume>3</volume><spage>5</spage><epage>8</epage><pages>5-8</pages><isbn>9780769541914</isbn><isbn>0769541917</isbn><isbn>9781424484829</isbn><isbn>1424484820</isbn><eisbn>9780769541914</eisbn><eisbn>0769541917</eisbn><abstract>Social networks can be extracted from different data about communication or common activities in organizations, companies or various Internet-based services. Different types of data processed may result in creation of separate layers in the complex multilayered social network. Analysis of neighbourhoods of network members and their utilization to social group discovery appears to be an interesting and important research domain. Since there is no measure to evaluate structure of the neighbourhoods in the multilayered social network, a new measure called cross layered multi-layered clustering coefficient (CLMCC) is proposed in the paper. It enables to analyse the density of mutual connections of neighbours that occur in at least a given number of layers in a social network. Additionally, experimental studies on real world data are presented.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/WI-IAT.2010.313</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769541914
ispartof 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2010, Vol.3, p.5-8
issn
language eng
recordid cdi_ieee_primary_5614795
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communication channels
Complex networks
Cross layer design
Fitting
Mathematics of computing
Mathematics of computing -- Discrete mathematics
Mathematics of computing -- Discrete mathematics -- Graph theory
Mathematics of computing -- Discrete mathematics -- Graph theory -- Network flows
Measurement
multi-layered social network
neighbourhood analysis
Presses
social network analysis
Social network services
title Individual Neighbourhood Exploration in Complex Multi-layered Social Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Individual%20Neighbourhood%20Exploration%20in%20Complex%20Multi-layered%20Social%20Network&rft.btitle=2010%20IEEE/WIC/ACM%20International%20Conference%20on%20Web%20Intelligence%20and%20Intelligent%20Agent%20Technology&rft.au=Kazienko,%20Przemyslaw&rft.date=2010-08-31&rft.volume=3&rft.spage=5&rft.epage=8&rft.pages=5-8&rft.isbn=9780769541914&rft.isbn_list=0769541917&rft.isbn_list=9781424484829&rft.isbn_list=1424484820&rft_id=info:doi/10.1109/WI-IAT.2010.313&rft.eisbn=9780769541914&rft.eisbn_list=0769541917&rft_dat=%3Cacm_6IE%3Eacm_books_10_1109_WI_IAT_2010_313%3C/acm_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2493-5ee67043229858f5ec0ec3e7fc055ca1572129fb1f7f1dc4545bf4ff85b7d2bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5614795&rfr_iscdi=true