Loading…
Data Warehousing in an Industrial Software Development Environment
Data quality is one of the bases for effective data mining. Flexible, consistent and extensible data storage is one of the requirements for effective data analysis. For more than 15 years, researchers in the database and decision making world have been studying the construction of data repositories...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 135 |
container_issue | |
container_start_page | 131 |
container_title | |
container_volume | |
creator | Colaco Junior, Methanias Mendonca, Manoel Rodrigues, Francisco |
description | Data quality is one of the bases for effective data mining. Flexible, consistent and extensible data storage is one of the requirements for effective data analysis. For more than 15 years, researchers in the database and decision making world have been studying the construction of data repositories for data analysis. Named data warehouses, these repositories are historical databases, which are separated both logically and physically from the organization production environment and designed to store data gathered from this environment. Data warehousing also includes data selection, integration and organization approaches to make data easily accessible to the decision making process. Based on our previous experience with data warehousing for mining software repositories, this paper presents a Data Warehousing Approach for software development data analysis. |
doi_str_mv | 10.1109/SEW.2009.7 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5621799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5621799</ieee_id><sourcerecordid>5621799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a60a9dbdbb6bf1e8c880bf7615e5637f197c41bc38d98a9b7b88fb39f4e2d1643</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhFdUsNZcvHrZP5C6m_18j9pGLRQ8tNBj2U3e1ZV0U5K04r83os5l5oFhYAi55WzGOYP7dbmdFYzBzJyRDIzlspBSWy3VObn-BwEXZMKVYrkuuLoiWd9_sFFSFaBgQh4XbnB06zp8b499TG80JuoSXab62A9ddA1dt2H4HAt0gSds2sMe00DLdIpdm37yDbkMrukx-_Mp2TyVm_lLvnp9Xs4fVnkENuROMwe1r73XPnC0lbXMB6O5QqWFCRxMJbmvhK3BOvDGWxu8gCCxqLmWYkrufmcjIu4OXdy77munxlsGQHwDBoBMSA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Warehousing in an Industrial Software Development Environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Colaco Junior, Methanias ; Mendonca, Manoel ; Rodrigues, Francisco</creator><creatorcontrib>Colaco Junior, Methanias ; Mendonca, Manoel ; Rodrigues, Francisco</creatorcontrib><description>Data quality is one of the bases for effective data mining. Flexible, consistent and extensible data storage is one of the requirements for effective data analysis. For more than 15 years, researchers in the database and decision making world have been studying the construction of data repositories for data analysis. Named data warehouses, these repositories are historical databases, which are separated both logically and physically from the organization production environment and designed to store data gathered from this environment. Data warehousing also includes data selection, integration and organization approaches to make data easily accessible to the decision making process. Based on our previous experience with data warehousing for mining software repositories, this paper presents a Data Warehousing Approach for software development data analysis.</description><identifier>ISSN: 1550-6215</identifier><identifier>ISBN: 1424468639</identifier><identifier>ISBN: 9781424468638</identifier><identifier>EISBN: 9781424468645</identifier><identifier>EISBN: 1424468647</identifier><identifier>DOI: 10.1109/SEW.2009.7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; History ; Maintenance engineering ; Measurement ; Mining Software Repositories ; Software ; Software Data Warehouse ; Software engineering ; Software Engineering Intelligence ; Warehousing</subject><ispartof>2009 33rd Annual IEEE Software Engineering Workshop, 2009, p.131-135</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5621799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5621799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colaco Junior, Methanias</creatorcontrib><creatorcontrib>Mendonca, Manoel</creatorcontrib><creatorcontrib>Rodrigues, Francisco</creatorcontrib><title>Data Warehousing in an Industrial Software Development Environment</title><title>2009 33rd Annual IEEE Software Engineering Workshop</title><addtitle>SEW</addtitle><description>Data quality is one of the bases for effective data mining. Flexible, consistent and extensible data storage is one of the requirements for effective data analysis. For more than 15 years, researchers in the database and decision making world have been studying the construction of data repositories for data analysis. Named data warehouses, these repositories are historical databases, which are separated both logically and physically from the organization production environment and designed to store data gathered from this environment. Data warehousing also includes data selection, integration and organization approaches to make data easily accessible to the decision making process. Based on our previous experience with data warehousing for mining software repositories, this paper presents a Data Warehousing Approach for software development data analysis.</description><subject>Data mining</subject><subject>History</subject><subject>Maintenance engineering</subject><subject>Measurement</subject><subject>Mining Software Repositories</subject><subject>Software</subject><subject>Software Data Warehouse</subject><subject>Software engineering</subject><subject>Software Engineering Intelligence</subject><subject>Warehousing</subject><issn>1550-6215</issn><isbn>1424468639</isbn><isbn>9781424468638</isbn><isbn>9781424468645</isbn><isbn>1424468647</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AYhFdUsNZcvHrZP5C6m_18j9pGLRQ8tNBj2U3e1ZV0U5K04r83os5l5oFhYAi55WzGOYP7dbmdFYzBzJyRDIzlspBSWy3VObn-BwEXZMKVYrkuuLoiWd9_sFFSFaBgQh4XbnB06zp8b499TG80JuoSXab62A9ddA1dt2H4HAt0gSds2sMe00DLdIpdm37yDbkMrukx-_Mp2TyVm_lLvnp9Xs4fVnkENuROMwe1r73XPnC0lbXMB6O5QqWFCRxMJbmvhK3BOvDGWxu8gCCxqLmWYkrufmcjIu4OXdy77munxlsGQHwDBoBMSA</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Colaco Junior, Methanias</creator><creator>Mendonca, Manoel</creator><creator>Rodrigues, Francisco</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200910</creationdate><title>Data Warehousing in an Industrial Software Development Environment</title><author>Colaco Junior, Methanias ; Mendonca, Manoel ; Rodrigues, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a60a9dbdbb6bf1e8c880bf7615e5637f197c41bc38d98a9b7b88fb39f4e2d1643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data mining</topic><topic>History</topic><topic>Maintenance engineering</topic><topic>Measurement</topic><topic>Mining Software Repositories</topic><topic>Software</topic><topic>Software Data Warehouse</topic><topic>Software engineering</topic><topic>Software Engineering Intelligence</topic><topic>Warehousing</topic><toplevel>online_resources</toplevel><creatorcontrib>Colaco Junior, Methanias</creatorcontrib><creatorcontrib>Mendonca, Manoel</creatorcontrib><creatorcontrib>Rodrigues, Francisco</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colaco Junior, Methanias</au><au>Mendonca, Manoel</au><au>Rodrigues, Francisco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Warehousing in an Industrial Software Development Environment</atitle><btitle>2009 33rd Annual IEEE Software Engineering Workshop</btitle><stitle>SEW</stitle><date>2009-10</date><risdate>2009</risdate><spage>131</spage><epage>135</epage><pages>131-135</pages><issn>1550-6215</issn><isbn>1424468639</isbn><isbn>9781424468638</isbn><eisbn>9781424468645</eisbn><eisbn>1424468647</eisbn><abstract>Data quality is one of the bases for effective data mining. Flexible, consistent and extensible data storage is one of the requirements for effective data analysis. For more than 15 years, researchers in the database and decision making world have been studying the construction of data repositories for data analysis. Named data warehouses, these repositories are historical databases, which are separated both logically and physically from the organization production environment and designed to store data gathered from this environment. Data warehousing also includes data selection, integration and organization approaches to make data easily accessible to the decision making process. Based on our previous experience with data warehousing for mining software repositories, this paper presents a Data Warehousing Approach for software development data analysis.</abstract><pub>IEEE</pub><doi>10.1109/SEW.2009.7</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-6215 |
ispartof | 2009 33rd Annual IEEE Software Engineering Workshop, 2009, p.131-135 |
issn | 1550-6215 |
language | eng |
recordid | cdi_ieee_primary_5621799 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining History Maintenance engineering Measurement Mining Software Repositories Software Software Data Warehouse Software engineering Software Engineering Intelligence Warehousing |
title | Data Warehousing in an Industrial Software Development Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Warehousing%20in%20an%20Industrial%20Software%20Development%20Environment&rft.btitle=2009%2033rd%20Annual%20IEEE%20Software%20Engineering%20Workshop&rft.au=Colaco%20Junior,%20Methanias&rft.date=2009-10&rft.spage=131&rft.epage=135&rft.pages=131-135&rft.issn=1550-6215&rft.isbn=1424468639&rft.isbn_list=9781424468638&rft_id=info:doi/10.1109/SEW.2009.7&rft.eisbn=9781424468645&rft.eisbn_list=1424468647&rft_dat=%3Cieee_6IE%3E5621799%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-a60a9dbdbb6bf1e8c880bf7615e5637f197c41bc38d98a9b7b88fb39f4e2d1643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5621799&rfr_iscdi=true |