Loading…

Shedding Light on Enterprise Network Failures Using Spotlight

Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers)....

Full description

Saved in:
Bibliographic Details
Main Authors: John, D, Prakash, P, Kompella, R R, Chandra, R
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 176
container_issue
container_start_page 167
container_title
container_volume
creator John, D
Prakash, P
Kompella, R R
Chandra, R
description Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis.
doi_str_mv 10.1109/SRDS.2010.27
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5623391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5623391</ieee_id><sourcerecordid>5623391</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1d93adee1ca80a1db9d7ff4df63916bcc2a49fecfc4e2a546fe3ca7f79b241d53</originalsourceid><addsrcrecordid>eNotjstKw0AYRgcvYKjZuXMzL5A698vChdRWhaBg7LpMZv5pB2NTMhHx7Zuiq48Dh8OH0A0lc0qJvWveH5s5IxMyfYYKJrWsjFDsHJVWG6KVlYJJYi5QQYkilTVSX6Ey59QSprQyjPEC3Tc7CCHtt7hO292I-z1e7kcYDkPKgF9h_OmHT7xyqfseION1PqnNoR-7k36NLqPrMpT_O0Pr1fJj8VzVb08vi4e6SlTLsaLBchcAqHeGOBpaG3SMIkTFLVWt98wJG8FHL4A5KVQE7p2O2rZM0CD5DN3-dRMAbKZvX2743UjF-BTgRxkmS8o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shedding Light on Enterprise Network Failures Using Spotlight</title><source>IEEE Xplore All Conference Series</source><creator>John, D ; Prakash, P ; Kompella, R R ; Chandra, R</creator><creatorcontrib>John, D ; Prakash, P ; Kompella, R R ; Chandra, R</creatorcontrib><description>Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis.</description><identifier>ISSN: 1060-9857</identifier><identifier>ISBN: 9780769542508</identifier><identifier>ISBN: 0769542506</identifier><identifier>EISSN: 2575-8462</identifier><identifier>DOI: 10.1109/SRDS.2010.27</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bayesian methods ; dependency graphs ; enterprise networks ; fault localization ; Inference algorithms ; Instruments ; Network topology ; Probabilistic logic ; Servers</subject><ispartof>2010 29th IEEE Symposium on Reliable Distributed Systems, 2010, p.167-176</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5623391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5623391$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>John, D</creatorcontrib><creatorcontrib>Prakash, P</creatorcontrib><creatorcontrib>Kompella, R R</creatorcontrib><creatorcontrib>Chandra, R</creatorcontrib><title>Shedding Light on Enterprise Network Failures Using Spotlight</title><title>2010 29th IEEE Symposium on Reliable Distributed Systems</title><addtitle>SRDS</addtitle><description>Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis.</description><subject>Accuracy</subject><subject>Bayesian methods</subject><subject>dependency graphs</subject><subject>enterprise networks</subject><subject>fault localization</subject><subject>Inference algorithms</subject><subject>Instruments</subject><subject>Network topology</subject><subject>Probabilistic logic</subject><subject>Servers</subject><issn>1060-9857</issn><issn>2575-8462</issn><isbn>9780769542508</isbn><isbn>0769542506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKw0AYRgcvYKjZuXMzL5A698vChdRWhaBg7LpMZv5pB2NTMhHx7Zuiq48Dh8OH0A0lc0qJvWveH5s5IxMyfYYKJrWsjFDsHJVWG6KVlYJJYi5QQYkilTVSX6Ey59QSprQyjPEC3Tc7CCHtt7hO292I-z1e7kcYDkPKgF9h_OmHT7xyqfseION1PqnNoR-7k36NLqPrMpT_O0Pr1fJj8VzVb08vi4e6SlTLsaLBchcAqHeGOBpaG3SMIkTFLVWt98wJG8FHL4A5KVQE7p2O2rZM0CD5DN3-dRMAbKZvX2743UjF-BTgRxkmS8o</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>John, D</creator><creator>Prakash, P</creator><creator>Kompella, R R</creator><creator>Chandra, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Shedding Light on Enterprise Network Failures Using Spotlight</title><author>John, D ; Prakash, P ; Kompella, R R ; Chandra, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1d93adee1ca80a1db9d7ff4df63916bcc2a49fecfc4e2a546fe3ca7f79b241d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Bayesian methods</topic><topic>dependency graphs</topic><topic>enterprise networks</topic><topic>fault localization</topic><topic>Inference algorithms</topic><topic>Instruments</topic><topic>Network topology</topic><topic>Probabilistic logic</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>John, D</creatorcontrib><creatorcontrib>Prakash, P</creatorcontrib><creatorcontrib>Kompella, R R</creatorcontrib><creatorcontrib>Chandra, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>John, D</au><au>Prakash, P</au><au>Kompella, R R</au><au>Chandra, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shedding Light on Enterprise Network Failures Using Spotlight</atitle><btitle>2010 29th IEEE Symposium on Reliable Distributed Systems</btitle><stitle>SRDS</stitle><date>2010-10</date><risdate>2010</risdate><spage>167</spage><epage>176</epage><pages>167-176</pages><issn>1060-9857</issn><eissn>2575-8462</eissn><isbn>9780769542508</isbn><isbn>0769542506</isbn><abstract>Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/SRDS.2010.27</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1060-9857
ispartof 2010 29th IEEE Symposium on Reliable Distributed Systems, 2010, p.167-176
issn 1060-9857
2575-8462
language eng
recordid cdi_ieee_primary_5623391
source IEEE Xplore All Conference Series
subjects Accuracy
Bayesian methods
dependency graphs
enterprise networks
fault localization
Inference algorithms
Instruments
Network topology
Probabilistic logic
Servers
title Shedding Light on Enterprise Network Failures Using Spotlight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shedding%20Light%20on%20Enterprise%20Network%20Failures%20Using%20Spotlight&rft.btitle=2010%2029th%20IEEE%20Symposium%20on%20Reliable%20Distributed%20Systems&rft.au=John,%20D&rft.date=2010-10&rft.spage=167&rft.epage=176&rft.pages=167-176&rft.issn=1060-9857&rft.eissn=2575-8462&rft.isbn=9780769542508&rft.isbn_list=0769542506&rft_id=info:doi/10.1109/SRDS.2010.27&rft_dat=%3Cieee_CHZPO%3E5623391%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1d93adee1ca80a1db9d7ff4df63916bcc2a49fecfc4e2a546fe3ca7f79b241d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5623391&rfr_iscdi=true