Loading…
Shedding Light on Enterprise Network Failures Using Spotlight
Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers)....
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 176 |
container_issue | |
container_start_page | 167 |
container_title | |
container_volume | |
creator | John, D Prakash, P Kompella, R R Chandra, R |
description | Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis. |
doi_str_mv | 10.1109/SRDS.2010.27 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5623391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5623391</ieee_id><sourcerecordid>5623391</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1d93adee1ca80a1db9d7ff4df63916bcc2a49fecfc4e2a546fe3ca7f79b241d53</originalsourceid><addsrcrecordid>eNotjstKw0AYRgcvYKjZuXMzL5A698vChdRWhaBg7LpMZv5pB2NTMhHx7Zuiq48Dh8OH0A0lc0qJvWveH5s5IxMyfYYKJrWsjFDsHJVWG6KVlYJJYi5QQYkilTVSX6Ey59QSprQyjPEC3Tc7CCHtt7hO292I-z1e7kcYDkPKgF9h_OmHT7xyqfseION1PqnNoR-7k36NLqPrMpT_O0Pr1fJj8VzVb08vi4e6SlTLsaLBchcAqHeGOBpaG3SMIkTFLVWt98wJG8FHL4A5KVQE7p2O2rZM0CD5DN3-dRMAbKZvX2743UjF-BTgRxkmS8o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shedding Light on Enterprise Network Failures Using Spotlight</title><source>IEEE Xplore All Conference Series</source><creator>John, D ; Prakash, P ; Kompella, R R ; Chandra, R</creator><creatorcontrib>John, D ; Prakash, P ; Kompella, R R ; Chandra, R</creatorcontrib><description>Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis.</description><identifier>ISSN: 1060-9857</identifier><identifier>ISBN: 9780769542508</identifier><identifier>ISBN: 0769542506</identifier><identifier>EISSN: 2575-8462</identifier><identifier>DOI: 10.1109/SRDS.2010.27</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bayesian methods ; dependency graphs ; enterprise networks ; fault localization ; Inference algorithms ; Instruments ; Network topology ; Probabilistic logic ; Servers</subject><ispartof>2010 29th IEEE Symposium on Reliable Distributed Systems, 2010, p.167-176</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5623391$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5623391$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>John, D</creatorcontrib><creatorcontrib>Prakash, P</creatorcontrib><creatorcontrib>Kompella, R R</creatorcontrib><creatorcontrib>Chandra, R</creatorcontrib><title>Shedding Light on Enterprise Network Failures Using Spotlight</title><title>2010 29th IEEE Symposium on Reliable Distributed Systems</title><addtitle>SRDS</addtitle><description>Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis.</description><subject>Accuracy</subject><subject>Bayesian methods</subject><subject>dependency graphs</subject><subject>enterprise networks</subject><subject>fault localization</subject><subject>Inference algorithms</subject><subject>Instruments</subject><subject>Network topology</subject><subject>Probabilistic logic</subject><subject>Servers</subject><issn>1060-9857</issn><issn>2575-8462</issn><isbn>9780769542508</isbn><isbn>0769542506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKw0AYRgcvYKjZuXMzL5A698vChdRWhaBg7LpMZv5pB2NTMhHx7Zuiq48Dh8OH0A0lc0qJvWveH5s5IxMyfYYKJrWsjFDsHJVWG6KVlYJJYi5QQYkilTVSX6Ey59QSprQyjPEC3Tc7CCHtt7hO292I-z1e7kcYDkPKgF9h_OmHT7xyqfseION1PqnNoR-7k36NLqPrMpT_O0Pr1fJj8VzVb08vi4e6SlTLsaLBchcAqHeGOBpaG3SMIkTFLVWt98wJG8FHL4A5KVQE7p2O2rZM0CD5DN3-dRMAbKZvX2743UjF-BTgRxkmS8o</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>John, D</creator><creator>Prakash, P</creator><creator>Kompella, R R</creator><creator>Chandra, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Shedding Light on Enterprise Network Failures Using Spotlight</title><author>John, D ; Prakash, P ; Kompella, R R ; Chandra, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1d93adee1ca80a1db9d7ff4df63916bcc2a49fecfc4e2a546fe3ca7f79b241d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Bayesian methods</topic><topic>dependency graphs</topic><topic>enterprise networks</topic><topic>fault localization</topic><topic>Inference algorithms</topic><topic>Instruments</topic><topic>Network topology</topic><topic>Probabilistic logic</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>John, D</creatorcontrib><creatorcontrib>Prakash, P</creatorcontrib><creatorcontrib>Kompella, R R</creatorcontrib><creatorcontrib>Chandra, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>John, D</au><au>Prakash, P</au><au>Kompella, R R</au><au>Chandra, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shedding Light on Enterprise Network Failures Using Spotlight</atitle><btitle>2010 29th IEEE Symposium on Reliable Distributed Systems</btitle><stitle>SRDS</stitle><date>2010-10</date><risdate>2010</risdate><spage>167</spage><epage>176</epage><pages>167-176</pages><issn>1060-9857</issn><eissn>2575-8462</eissn><isbn>9780769542508</isbn><isbn>0769542506</isbn><abstract>Fault localization in enterprise networks is extremely challenging. A recent approach called Sherlock makes some headway into this problem by using an inference algorithm over a multi-tier probabilistic dependency graph that relates fault symptoms with possible root causes (e.g., routers, servers). A key limitation of Sherlock is its scalability because of the use of complicated inference algorithms based on Bayesian networks. We present a fault localization system called Spotlight that essentially uses two basic ideas. First, it compresses a multi-tier dependency graph into a bipartite graph with direct probabilistic edges between root causes and symptoms. Second, it runs a novel weighted greedy minimum set cover algorithm to provide fast inference. Through extensive simulations with real service dependency graphs and enterprise network topologies reported previously in literature, we show that Spotlight is about 100× faster than Sherlock in typical settings, with comparable accuracy in diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/SRDS.2010.27</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1060-9857 |
ispartof | 2010 29th IEEE Symposium on Reliable Distributed Systems, 2010, p.167-176 |
issn | 1060-9857 2575-8462 |
language | eng |
recordid | cdi_ieee_primary_5623391 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Bayesian methods dependency graphs enterprise networks fault localization Inference algorithms Instruments Network topology Probabilistic logic Servers |
title | Shedding Light on Enterprise Network Failures Using Spotlight |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shedding%20Light%20on%20Enterprise%20Network%20Failures%20Using%20Spotlight&rft.btitle=2010%2029th%20IEEE%20Symposium%20on%20Reliable%20Distributed%20Systems&rft.au=John,%20D&rft.date=2010-10&rft.spage=167&rft.epage=176&rft.pages=167-176&rft.issn=1060-9857&rft.eissn=2575-8462&rft.isbn=9780769542508&rft.isbn_list=0769542506&rft_id=info:doi/10.1109/SRDS.2010.27&rft_dat=%3Cieee_CHZPO%3E5623391%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1d93adee1ca80a1db9d7ff4df63916bcc2a49fecfc4e2a546fe3ca7f79b241d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5623391&rfr_iscdi=true |