Loading…
22nm node p+ USJ defect analysis with various PAI and HALO structures using laser annealing
Boron 200eV 1E15/cm 2 p+ Ultra Shallow Junctions with various PAI (Ge, Xe & In) and HALO (As & Sb) implantation activated by msec laser annealing (1220°C to 1350°C) were studied using Junction Photo Voltage (JPV) and Modulated Photo Reflectance (MPR). JPV and MPR provided information about j...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Boron 200eV 1E15/cm 2 p+ Ultra Shallow Junctions with various PAI (Ge, Xe & In) and HALO (As & Sb) implantation activated by msec laser annealing (1220°C to 1350°C) were studied using Junction Photo Voltage (JPV) and Modulated Photo Reflectance (MPR). JPV and MPR provided information about junction quality; dopant activation, junction capacitance, residual implant damage and junction leakage. Highest p+ junction quality and best p+ dopant activation was achieved with laser annealing temperatures >1300°C. The results with Sb-HALO were worse than with As-HALO. For HALO implants junction leakage was controlled by direct band to band tunneling while for no HALO it was controlled by end of range residual PAI defects. The high junction leakage (exceeding E-5 A/cm 2 ) could lead to unreliable Rs and junction capacitance determination. |
---|---|
ISSN: | 1944-0251 1944-026X |
DOI: | 10.1109/RTP.2010.5623804 |