Loading…

Retrieving quantized signal from its noisy version

In this paper we propose an algorithm to retrieve a quantized data from its noisy version. To find the optimum quantization levels, a multistage process minimizes the Mean Square Error (MSE) at each quantization level by using the Minimum Noiseless Description Length (MNDL) algorithm. Consequently,...

Full description

Saved in:
Bibliographic Details
Main Authors: Hashemi, SayedMasoud, Beheshti, Soosan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 461
container_issue
container_start_page 456
container_title
container_volume
creator Hashemi, SayedMasoud
Beheshti, Soosan
description In this paper we propose an algorithm to retrieve a quantized data from its noisy version. To find the optimum quantization levels, a multistage process minimizes the Mean Square Error (MSE) at each quantization level by using the Minimum Noiseless Description Length (MNDL) algorithm. Consequently, the procedure denoises and recovers the quantized data simultaneously. The prior knowledge that the original signal is a quantized data enables us to denoise the data more efficiently. We show that in high Signal to Noise Ratio (SNR) cases, the retrieved levels are the same as the original levels of the quantized signal. However, in low SNR cases, since the quantized signal has been highly effected by the additive noise, the optimum retrieved levels are less than the original quantization levels.
doi_str_mv 10.1109/SIPS.2010.5624890
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5624890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5624890</ieee_id><sourcerecordid>5624890</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f6db121d91e43c12384047fde28379e149cf17e6e664e980f9f541ecfe3ba33</originalsourceid><addsrcrecordid>eNo9j91qAjEQRtM_qFofoPQmL7A2M5lNNpdFaisIFu29rLsTSdFsu9kK9ukr1Hr1cThw4BPiHtQIQLnH5fRtOUJ1xNwgFU5diKGzBRDSkTTpS9FDMJjp3Kor0f8XaK7PwuCt6Kf0oZShHE1P4IK7NvA-xI38-i5jF364lilsYrmVvm12MnRJxiakg9xzm0IT78SNL7eJh6cdiMXk-X38ms3mL9Px0ywLTnWZN_UaEGoHTLoC1AUpsr5mLLR1DOQqD5YNG0PsCuWdzwm48qzXpdYD8fAXDcy8-mzDrmwPq9Nx_QsKNkgc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Retrieving quantized signal from its noisy version</title><source>IEEE Xplore All Conference Series</source><creator>Hashemi, SayedMasoud ; Beheshti, Soosan</creator><creatorcontrib>Hashemi, SayedMasoud ; Beheshti, Soosan</creatorcontrib><description>In this paper we propose an algorithm to retrieve a quantized data from its noisy version. To find the optimum quantization levels, a multistage process minimizes the Mean Square Error (MSE) at each quantization level by using the Minimum Noiseless Description Length (MNDL) algorithm. Consequently, the procedure denoises and recovers the quantized data simultaneously. The prior knowledge that the original signal is a quantized data enables us to denoise the data more efficiently. We show that in high Signal to Noise Ratio (SNR) cases, the retrieved levels are the same as the original levels of the quantized signal. However, in low SNR cases, since the quantized signal has been highly effected by the additive noise, the optimum retrieved levels are less than the original quantization levels.</description><identifier>ISSN: 2162-3562</identifier><identifier>ISBN: 1424489326</identifier><identifier>ISBN: 9781424489329</identifier><identifier>EISSN: 2162-3570</identifier><identifier>EISBN: 9781424489343</identifier><identifier>EISBN: 1424489334</identifier><identifier>EISBN: 9781424489336</identifier><identifier>EISBN: 1424489342</identifier><identifier>DOI: 10.1109/SIPS.2010.5624890</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive noise ; Gaussian noise ; Noise measurement ; Noise reduction ; Quantization ; Signal to noise ratio ; Wavelet transforms</subject><ispartof>2010 IEEE Workshop On Signal Processing Systems, 2010, p.456-461</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5624890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5624890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><creatorcontrib>Beheshti, Soosan</creatorcontrib><title>Retrieving quantized signal from its noisy version</title><title>2010 IEEE Workshop On Signal Processing Systems</title><addtitle>SIPS</addtitle><description>In this paper we propose an algorithm to retrieve a quantized data from its noisy version. To find the optimum quantization levels, a multistage process minimizes the Mean Square Error (MSE) at each quantization level by using the Minimum Noiseless Description Length (MNDL) algorithm. Consequently, the procedure denoises and recovers the quantized data simultaneously. The prior knowledge that the original signal is a quantized data enables us to denoise the data more efficiently. We show that in high Signal to Noise Ratio (SNR) cases, the retrieved levels are the same as the original levels of the quantized signal. However, in low SNR cases, since the quantized signal has been highly effected by the additive noise, the optimum retrieved levels are less than the original quantization levels.</description><subject>Additive noise</subject><subject>Gaussian noise</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Quantization</subject><subject>Signal to noise ratio</subject><subject>Wavelet transforms</subject><issn>2162-3562</issn><issn>2162-3570</issn><isbn>1424489326</isbn><isbn>9781424489329</isbn><isbn>9781424489343</isbn><isbn>1424489334</isbn><isbn>9781424489336</isbn><isbn>1424489342</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j91qAjEQRtM_qFofoPQmL7A2M5lNNpdFaisIFu29rLsTSdFsu9kK9ukr1Hr1cThw4BPiHtQIQLnH5fRtOUJ1xNwgFU5diKGzBRDSkTTpS9FDMJjp3Kor0f8XaK7PwuCt6Kf0oZShHE1P4IK7NvA-xI38-i5jF364lilsYrmVvm12MnRJxiakg9xzm0IT78SNL7eJh6cdiMXk-X38ms3mL9Px0ywLTnWZN_UaEGoHTLoC1AUpsr5mLLR1DOQqD5YNG0PsCuWdzwm48qzXpdYD8fAXDcy8-mzDrmwPq9Nx_QsKNkgc</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Hashemi, SayedMasoud</creator><creator>Beheshti, Soosan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Retrieving quantized signal from its noisy version</title><author>Hashemi, SayedMasoud ; Beheshti, Soosan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f6db121d91e43c12384047fde28379e149cf17e6e664e980f9f541ecfe3ba33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Additive noise</topic><topic>Gaussian noise</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Quantization</topic><topic>Signal to noise ratio</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, SayedMasoud</creatorcontrib><creatorcontrib>Beheshti, Soosan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hashemi, SayedMasoud</au><au>Beheshti, Soosan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Retrieving quantized signal from its noisy version</atitle><btitle>2010 IEEE Workshop On Signal Processing Systems</btitle><stitle>SIPS</stitle><date>2010-10</date><risdate>2010</risdate><spage>456</spage><epage>461</epage><pages>456-461</pages><issn>2162-3562</issn><eissn>2162-3570</eissn><isbn>1424489326</isbn><isbn>9781424489329</isbn><eisbn>9781424489343</eisbn><eisbn>1424489334</eisbn><eisbn>9781424489336</eisbn><eisbn>1424489342</eisbn><abstract>In this paper we propose an algorithm to retrieve a quantized data from its noisy version. To find the optimum quantization levels, a multistage process minimizes the Mean Square Error (MSE) at each quantization level by using the Minimum Noiseless Description Length (MNDL) algorithm. Consequently, the procedure denoises and recovers the quantized data simultaneously. The prior knowledge that the original signal is a quantized data enables us to denoise the data more efficiently. We show that in high Signal to Noise Ratio (SNR) cases, the retrieved levels are the same as the original levels of the quantized signal. However, in low SNR cases, since the quantized signal has been highly effected by the additive noise, the optimum retrieved levels are less than the original quantization levels.</abstract><pub>IEEE</pub><doi>10.1109/SIPS.2010.5624890</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-3562
ispartof 2010 IEEE Workshop On Signal Processing Systems, 2010, p.456-461
issn 2162-3562
2162-3570
language eng
recordid cdi_ieee_primary_5624890
source IEEE Xplore All Conference Series
subjects Additive noise
Gaussian noise
Noise measurement
Noise reduction
Quantization
Signal to noise ratio
Wavelet transforms
title Retrieving quantized signal from its noisy version
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Retrieving%20quantized%20signal%20from%20its%20noisy%20version&rft.btitle=2010%20IEEE%20Workshop%20On%20Signal%20Processing%20Systems&rft.au=Hashemi,%20SayedMasoud&rft.date=2010-10&rft.spage=456&rft.epage=461&rft.pages=456-461&rft.issn=2162-3562&rft.eissn=2162-3570&rft.isbn=1424489326&rft.isbn_list=9781424489329&rft_id=info:doi/10.1109/SIPS.2010.5624890&rft.eisbn=9781424489343&rft.eisbn_list=1424489334&rft.eisbn_list=9781424489336&rft.eisbn_list=1424489342&rft_dat=%3Cieee_CHZPO%3E5624890%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-f6db121d91e43c12384047fde28379e149cf17e6e664e980f9f541ecfe3ba33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5624890&rfr_iscdi=true