Loading…
Fuzzy observer for state estimation of the METANET traffic model
Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so s...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113 |
---|---|
cites | |
container_end_page | 24 |
container_issue | |
container_start_page | 19 |
container_title | |
container_volume | |
creator | Hidayat, Z. Lendek, Zs Babuska, R. De Schutter, B. |
description | Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate. |
doi_str_mv | 10.1109/ITSC.2010.5625223 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5625223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5625223</ieee_id><sourcerecordid>5625223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113</originalsourceid><addsrcrecordid>eNpVkM9KAzEYxOM_sNR9APGSF9j6fclmk9wsZauFqgfXc0k2Ca60riRRaJ_eBYvgaWb4wTAMIdcIM0TQt6v2ZTFjMEZRM8EYPyGFlgorVlWyFro-JROGgpcAKM_-McnO_xjoS1Kk9D464EzVHCbkbvl1OOzpYJOP3z7SMESassme-pT7ncn98EGHQPObp49NO39qWpqjCaHv6G5wfntFLoLZJl8cdUpel027eCjXz_erxXxddqiQl1pVUgMLHLmxxnHWgWS1dkwo4VxArbWqVWetA-6cEuA0ctsJqwV4icin5Oa3t_febz7juC3uN8c_-A8TYk0n</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy observer for state estimation of the METANET traffic model</title><source>IEEE Xplore All Conference Series</source><creator>Hidayat, Z. ; Lendek, Zs ; Babuska, R. ; De Schutter, B.</creator><creatorcontrib>Hidayat, Z. ; Lendek, Zs ; Babuska, R. ; De Schutter, B.</creatorcontrib><description>Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781424476572</identifier><identifier>ISBN: 1424476577</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781424476596</identifier><identifier>EISBN: 1424476593</identifier><identifier>EISBN: 1424476585</identifier><identifier>EISBN: 9781424476589</identifier><identifier>DOI: 10.1109/ITSC.2010.5625223</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Computational modeling ; Equations ; Mathematical model ; Nonlinear systems ; Observers ; Traffic control</subject><ispartof>13th International IEEE Conference on Intelligent Transportation Systems, 2010, p.19-24</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5625223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5625223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hidayat, Z.</creatorcontrib><creatorcontrib>Lendek, Zs</creatorcontrib><creatorcontrib>Babuska, R.</creatorcontrib><creatorcontrib>De Schutter, B.</creatorcontrib><title>Fuzzy observer for state estimation of the METANET traffic model</title><title>13th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate.</description><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>Traffic control</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781424476572</isbn><isbn>1424476577</isbn><isbn>9781424476596</isbn><isbn>1424476593</isbn><isbn>1424476585</isbn><isbn>9781424476589</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM9KAzEYxOM_sNR9APGSF9j6fclmk9wsZauFqgfXc0k2Ca60riRRaJ_eBYvgaWb4wTAMIdcIM0TQt6v2ZTFjMEZRM8EYPyGFlgorVlWyFro-JROGgpcAKM_-McnO_xjoS1Kk9D464EzVHCbkbvl1OOzpYJOP3z7SMESassme-pT7ncn98EGHQPObp49NO39qWpqjCaHv6G5wfntFLoLZJl8cdUpel027eCjXz_erxXxddqiQl1pVUgMLHLmxxnHWgWS1dkwo4VxArbWqVWetA-6cEuA0ctsJqwV4icin5Oa3t_febz7juC3uN8c_-A8TYk0n</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Hidayat, Z.</creator><creator>Lendek, Zs</creator><creator>Babuska, R.</creator><creator>De Schutter, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Fuzzy observer for state estimation of the METANET traffic model</title><author>Hidayat, Z. ; Lendek, Zs ; Babuska, R. ; De Schutter, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Hidayat, Z.</creatorcontrib><creatorcontrib>Lendek, Zs</creatorcontrib><creatorcontrib>Babuska, R.</creatorcontrib><creatorcontrib>De Schutter, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hidayat, Z.</au><au>Lendek, Zs</au><au>Babuska, R.</au><au>De Schutter, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy observer for state estimation of the METANET traffic model</atitle><btitle>13th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2010-09</date><risdate>2010</risdate><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781424476572</isbn><isbn>1424476577</isbn><eisbn>9781424476596</eisbn><eisbn>1424476593</eisbn><eisbn>1424476585</eisbn><eisbn>9781424476589</eisbn><abstract>Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2010.5625223</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0009 |
ispartof | 13th International IEEE Conference on Intelligent Transportation Systems, 2010, p.19-24 |
issn | 2153-0009 2153-0017 |
language | eng |
recordid | cdi_ieee_primary_5625223 |
source | IEEE Xplore All Conference Series |
subjects | Approximation methods Computational modeling Equations Mathematical model Nonlinear systems Observers Traffic control |
title | Fuzzy observer for state estimation of the METANET traffic model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20observer%20for%20state%20estimation%20of%20the%20METANET%20traffic%20model&rft.btitle=13th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Hidayat,%20Z.&rft.date=2010-09&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781424476572&rft.isbn_list=1424476577&rft_id=info:doi/10.1109/ITSC.2010.5625223&rft.eisbn=9781424476596&rft.eisbn_list=1424476593&rft.eisbn_list=1424476585&rft.eisbn_list=9781424476589&rft_dat=%3Cieee_CHZPO%3E5625223%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5625223&rfr_iscdi=true |