Loading…

Fuzzy observer for state estimation of the METANET traffic model

Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so s...

Full description

Saved in:
Bibliographic Details
Main Authors: Hidayat, Z., Lendek, Zs, Babuska, R., De Schutter, B.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113
cites
container_end_page 24
container_issue
container_start_page 19
container_title
container_volume
creator Hidayat, Z.
Lendek, Zs
Babuska, R.
De Schutter, B.
description Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate.
doi_str_mv 10.1109/ITSC.2010.5625223
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5625223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5625223</ieee_id><sourcerecordid>5625223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113</originalsourceid><addsrcrecordid>eNpVkM9KAzEYxOM_sNR9APGSF9j6fclmk9wsZauFqgfXc0k2Ca60riRRaJ_eBYvgaWb4wTAMIdcIM0TQt6v2ZTFjMEZRM8EYPyGFlgorVlWyFro-JROGgpcAKM_-McnO_xjoS1Kk9D464EzVHCbkbvl1OOzpYJOP3z7SMESassme-pT7ncn98EGHQPObp49NO39qWpqjCaHv6G5wfntFLoLZJl8cdUpel027eCjXz_erxXxddqiQl1pVUgMLHLmxxnHWgWS1dkwo4VxArbWqVWetA-6cEuA0ctsJqwV4icin5Oa3t_febz7juC3uN8c_-A8TYk0n</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy observer for state estimation of the METANET traffic model</title><source>IEEE Xplore All Conference Series</source><creator>Hidayat, Z. ; Lendek, Zs ; Babuska, R. ; De Schutter, B.</creator><creatorcontrib>Hidayat, Z. ; Lendek, Zs ; Babuska, R. ; De Schutter, B.</creatorcontrib><description>Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate.</description><identifier>ISSN: 2153-0009</identifier><identifier>ISBN: 9781424476572</identifier><identifier>ISBN: 1424476577</identifier><identifier>EISSN: 2153-0017</identifier><identifier>EISBN: 9781424476596</identifier><identifier>EISBN: 1424476593</identifier><identifier>EISBN: 1424476585</identifier><identifier>EISBN: 9781424476589</identifier><identifier>DOI: 10.1109/ITSC.2010.5625223</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Computational modeling ; Equations ; Mathematical model ; Nonlinear systems ; Observers ; Traffic control</subject><ispartof>13th International IEEE Conference on Intelligent Transportation Systems, 2010, p.19-24</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5625223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5625223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hidayat, Z.</creatorcontrib><creatorcontrib>Lendek, Zs</creatorcontrib><creatorcontrib>Babuska, R.</creatorcontrib><creatorcontrib>De Schutter, B.</creatorcontrib><title>Fuzzy observer for state estimation of the METANET traffic model</title><title>13th International IEEE Conference on Intelligent Transportation Systems</title><addtitle>ITSC</addtitle><description>Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate.</description><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>Traffic control</subject><issn>2153-0009</issn><issn>2153-0017</issn><isbn>9781424476572</isbn><isbn>1424476577</isbn><isbn>9781424476596</isbn><isbn>1424476593</isbn><isbn>1424476585</isbn><isbn>9781424476589</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM9KAzEYxOM_sNR9APGSF9j6fclmk9wsZauFqgfXc0k2Ca60riRRaJ_eBYvgaWb4wTAMIdcIM0TQt6v2ZTFjMEZRM8EYPyGFlgorVlWyFro-JROGgpcAKM_-McnO_xjoS1Kk9D464EzVHCbkbvl1OOzpYJOP3z7SMESassme-pT7ncn98EGHQPObp49NO39qWpqjCaHv6G5wfntFLoLZJl8cdUpel027eCjXz_erxXxddqiQl1pVUgMLHLmxxnHWgWS1dkwo4VxArbWqVWetA-6cEuA0ctsJqwV4icin5Oa3t_febz7juC3uN8c_-A8TYk0n</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Hidayat, Z.</creator><creator>Lendek, Zs</creator><creator>Babuska, R.</creator><creator>De Schutter, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Fuzzy observer for state estimation of the METANET traffic model</title><author>Hidayat, Z. ; Lendek, Zs ; Babuska, R. ; De Schutter, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Hidayat, Z.</creatorcontrib><creatorcontrib>Lendek, Zs</creatorcontrib><creatorcontrib>Babuska, R.</creatorcontrib><creatorcontrib>De Schutter, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hidayat, Z.</au><au>Lendek, Zs</au><au>Babuska, R.</au><au>De Schutter, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy observer for state estimation of the METANET traffic model</atitle><btitle>13th International IEEE Conference on Intelligent Transportation Systems</btitle><stitle>ITSC</stitle><date>2010-09</date><risdate>2010</risdate><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>2153-0009</issn><eissn>2153-0017</eissn><isbn>9781424476572</isbn><isbn>1424476577</isbn><eisbn>9781424476596</eisbn><eisbn>1424476593</eisbn><eisbn>1424476585</eisbn><eisbn>9781424476589</eisbn><abstract>Traffic control has proven an effective measure to reduce traffic congestion on freeways. In order to determine appropriate control actions, it is necessary to have information on the current state of the traffic. However, not all traffic states can be measured (such as the traffic density) and so state estimation must be applied in order to obtain state information from the available measurements. Linear state estimation methods are not directly applicable, as traffic models are in general nonlinear. In this paper we propose a nonlinear approach to state estimation that is based on a Takagi-Sugeno (TS) fuzzy model representation of the METANET traffic model. By representing the METANET traffic model as a TS fuzzy system, a structured observer design procedure can be applied, whereby the convergence of the observer is guaranteed. Simulation results are presented to illustrate the quality of the estimate.</abstract><pub>IEEE</pub><doi>10.1109/ITSC.2010.5625223</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0009
ispartof 13th International IEEE Conference on Intelligent Transportation Systems, 2010, p.19-24
issn 2153-0009
2153-0017
language eng
recordid cdi_ieee_primary_5625223
source IEEE Xplore All Conference Series
subjects Approximation methods
Computational modeling
Equations
Mathematical model
Nonlinear systems
Observers
Traffic control
title Fuzzy observer for state estimation of the METANET traffic model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20observer%20for%20state%20estimation%20of%20the%20METANET%20traffic%20model&rft.btitle=13th%20International%20IEEE%20Conference%20on%20Intelligent%20Transportation%20Systems&rft.au=Hidayat,%20Z.&rft.date=2010-09&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=2153-0009&rft.eissn=2153-0017&rft.isbn=9781424476572&rft.isbn_list=1424476577&rft_id=info:doi/10.1109/ITSC.2010.5625223&rft.eisbn=9781424476596&rft.eisbn_list=1424476593&rft.eisbn_list=1424476585&rft.eisbn_list=9781424476589&rft_dat=%3Cieee_CHZPO%3E5625223%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1813-9847902f313abad32c07269d2585ddf1999868cbbd03dd850d913bc5b950e7113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5625223&rfr_iscdi=true