Loading…
Optimal FES parameters based on mechanomyographic efficiency index
Functional electrical stimulation (FES) can artificially elicit movements in spinal cord injured (SCI) subjects. FES control strategies involve monitoring muscle features and setting FES profiles so as to postpone the installation of muscle fatigue or nerve cell adaptation. Mechanomyography (MMG) se...
Saved in:
Published in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, p.1378-1381 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Functional electrical stimulation (FES) can artificially elicit movements in spinal cord injured (SCI) subjects. FES control strategies involve monitoring muscle features and setting FES profiles so as to postpone the installation of muscle fatigue or nerve cell adaptation. Mechanomyography (MMG) sensors register the lateral oscillations of contracting muscles. This paper presents an MMG efficiency index (EI) that may indicate most efficient FES electrical parameters to control functional movements. Ten healthy and three SCI volunteers participated in the study. Four FES profiles with two FES sessions were applied with in-between 15min rest interval. MMG RMS and median frequency were inserted into the EI equation. EI increased along the test. FES profile set to 1kHz pulse frequency, 200μs active pulse duration and burst frequency of 50Hz was the most efficient. |
---|---|
ISSN: | 1094-687X 1558-4615 |
DOI: | 10.1109/IEMBS.2010.5626735 |