Loading…

A global sensitivity tool for cardiac cell modeling: Application to ionic current balance and hypertrophic signaling

Cardiovascular diseases are the major cause of death in the developed countries. Identifying key cellular processes involved in generation of the electrical signal and in regulation of signal transduction pathways is essential for unraveling the underlying mechanisms of heart rhythm behavior. Comput...

Full description

Saved in:
Bibliographic Details
Published in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, p.1498-1502
Main Authors: Sher, A A, Cooling, M T, Bethwaite, B, Tan, J, Peachey, T, Enticott, C, Garic, S, Gavaghan, D J, Noble, D, Abramson, D, Crampin, E J
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1502
container_issue
container_start_page 1498
container_title 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
container_volume
creator Sher, A A
Cooling, M T
Bethwaite, B
Tan, J
Peachey, T
Enticott, C
Garic, S
Gavaghan, D J
Noble, D
Abramson, D
Crampin, E J
description Cardiovascular diseases are the major cause of death in the developed countries. Identifying key cellular processes involved in generation of the electrical signal and in regulation of signal transduction pathways is essential for unraveling the underlying mechanisms of heart rhythm behavior. Computational cardiac models provide important insights into cardiovascular function and disease. Sensitivity analysis presents a key tool for exploring the large parameter space of such models, in order to determine the key factors determining and controlling the underlying physiological processes. We developed a new global sensitivity analysis tool which implements the Morris method, a global sensitivity screening algorithm, onto a Nimrod platform, which is a distributed resources software toolkit. The newly developed tool has been validated using the model of IP3-calcineurin signal transduction pathway model which has 30 parameters. The key driving factors of the IP3 transient behaviour have been calculated and confirmed to agree with previously published data. We next demonstrated the use of this method as an assessment tool for characterizing the structure of cardiac ionic models. In three latest human ventricular myocyte models, we examined the contribution of transmembrane currents to the shape of the electrical signal (i.e. on the action potential duration). The resulting profiles of the ionic current balance demonstrated the highly nonlinear nature of cardiac ionic models and identified key players in different models. Such profiling suggests new avenues for development of methodologies to predict drug action effects in cardiac cells.
doi_str_mv 10.1109/IEMBS.2010.5626841
format article
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5626841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5626841</ieee_id><sourcerecordid>5626841</sourcerecordid><originalsourceid>FETCH-LOGICAL-i370t-16f32d6d4dd1e7095df69110b92096e5f44ad392ca09b0679841e60cea2ab6be3</originalsourceid><addsrcrecordid>eNpFkNtKAzEUReMNe9Ef0Jf8wNTcJtP41paqhYoPKvhWMsmZNpJOhkwU-vdGLPi0OazN4rARuqFkQilRd6vl8_x1wki-S8nkVNATNKKCCSEoE-wUDWlZTgshaXn2D7g4z4AoUchp9TFAo77_JIQRUtJLNGCZSC7lEKUZ3vpQa497aHuX3LdLB5xC8LgJERsdrdMGG_Ae74MF79rtPZ51nXdGJxfa3MU5XO58xQhtwlmmWwNYtxbvDh3EFEO3y4XebVv9K7hCF432PVwfc4zeH5Zvi6di_fK4WszWheMVSQWVDWdWWmEthYqo0jZS5U1qxfL7UDZCaMsVM5qomshK5W1AEgOa6VrWwMfo9s_rAGDTRbfX8bA5rsh_ANheYnk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A global sensitivity tool for cardiac cell modeling: Application to ionic current balance and hypertrophic signaling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sher, A A ; Cooling, M T ; Bethwaite, B ; Tan, J ; Peachey, T ; Enticott, C ; Garic, S ; Gavaghan, D J ; Noble, D ; Abramson, D ; Crampin, E J</creator><creatorcontrib>Sher, A A ; Cooling, M T ; Bethwaite, B ; Tan, J ; Peachey, T ; Enticott, C ; Garic, S ; Gavaghan, D J ; Noble, D ; Abramson, D ; Crampin, E J</creatorcontrib><description>Cardiovascular diseases are the major cause of death in the developed countries. Identifying key cellular processes involved in generation of the electrical signal and in regulation of signal transduction pathways is essential for unraveling the underlying mechanisms of heart rhythm behavior. Computational cardiac models provide important insights into cardiovascular function and disease. Sensitivity analysis presents a key tool for exploring the large parameter space of such models, in order to determine the key factors determining and controlling the underlying physiological processes. We developed a new global sensitivity analysis tool which implements the Morris method, a global sensitivity screening algorithm, onto a Nimrod platform, which is a distributed resources software toolkit. The newly developed tool has been validated using the model of IP3-calcineurin signal transduction pathway model which has 30 parameters. The key driving factors of the IP3 transient behaviour have been calculated and confirmed to agree with previously published data. We next demonstrated the use of this method as an assessment tool for characterizing the structure of cardiac ionic models. In three latest human ventricular myocyte models, we examined the contribution of transmembrane currents to the shape of the electrical signal (i.e. on the action potential duration). The resulting profiles of the ionic current balance demonstrated the highly nonlinear nature of cardiac ionic models and identified key players in different models. Such profiling suggests new avenues for development of methodologies to predict drug action effects in cardiac cells.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5626841</identifier><identifier>PMID: 21096366</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Cooling ; Heart ; Humans ; Sensitivity analysis ; Transient analysis</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, p.1498-1502</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5626841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5626841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sher, A A</creatorcontrib><creatorcontrib>Cooling, M T</creatorcontrib><creatorcontrib>Bethwaite, B</creatorcontrib><creatorcontrib>Tan, J</creatorcontrib><creatorcontrib>Peachey, T</creatorcontrib><creatorcontrib>Enticott, C</creatorcontrib><creatorcontrib>Garic, S</creatorcontrib><creatorcontrib>Gavaghan, D J</creatorcontrib><creatorcontrib>Noble, D</creatorcontrib><creatorcontrib>Abramson, D</creatorcontrib><creatorcontrib>Crampin, E J</creatorcontrib><title>A global sensitivity tool for cardiac cell modeling: Application to ionic current balance and hypertrophic signaling</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><description>Cardiovascular diseases are the major cause of death in the developed countries. Identifying key cellular processes involved in generation of the electrical signal and in regulation of signal transduction pathways is essential for unraveling the underlying mechanisms of heart rhythm behavior. Computational cardiac models provide important insights into cardiovascular function and disease. Sensitivity analysis presents a key tool for exploring the large parameter space of such models, in order to determine the key factors determining and controlling the underlying physiological processes. We developed a new global sensitivity analysis tool which implements the Morris method, a global sensitivity screening algorithm, onto a Nimrod platform, which is a distributed resources software toolkit. The newly developed tool has been validated using the model of IP3-calcineurin signal transduction pathway model which has 30 parameters. The key driving factors of the IP3 transient behaviour have been calculated and confirmed to agree with previously published data. We next demonstrated the use of this method as an assessment tool for characterizing the structure of cardiac ionic models. In three latest human ventricular myocyte models, we examined the contribution of transmembrane currents to the shape of the electrical signal (i.e. on the action potential duration). The resulting profiles of the ionic current balance demonstrated the highly nonlinear nature of cardiac ionic models and identified key players in different models. Such profiling suggests new avenues for development of methodologies to predict drug action effects in cardiac cells.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Cooling</subject><subject>Heart</subject><subject>Humans</subject><subject>Sensitivity analysis</subject><subject>Transient analysis</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpFkNtKAzEUReMNe9Ef0Jf8wNTcJtP41paqhYoPKvhWMsmZNpJOhkwU-vdGLPi0OazN4rARuqFkQilRd6vl8_x1wki-S8nkVNATNKKCCSEoE-wUDWlZTgshaXn2D7g4z4AoUchp9TFAo77_JIQRUtJLNGCZSC7lEKUZ3vpQa497aHuX3LdLB5xC8LgJERsdrdMGG_Ae74MF79rtPZ51nXdGJxfa3MU5XO58xQhtwlmmWwNYtxbvDh3EFEO3y4XebVv9K7hCF432PVwfc4zeH5Zvi6di_fK4WszWheMVSQWVDWdWWmEthYqo0jZS5U1qxfL7UDZCaMsVM5qomshK5W1AEgOa6VrWwMfo9s_rAGDTRbfX8bA5rsh_ANheYnk</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Sher, A A</creator><creator>Cooling, M T</creator><creator>Bethwaite, B</creator><creator>Tan, J</creator><creator>Peachey, T</creator><creator>Enticott, C</creator><creator>Garic, S</creator><creator>Gavaghan, D J</creator><creator>Noble, D</creator><creator>Abramson, D</creator><creator>Crampin, E J</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>A global sensitivity tool for cardiac cell modeling: Application to ionic current balance and hypertrophic signaling</title><author>Sher, A A ; Cooling, M T ; Bethwaite, B ; Tan, J ; Peachey, T ; Enticott, C ; Garic, S ; Gavaghan, D J ; Noble, D ; Abramson, D ; Crampin, E J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i370t-16f32d6d4dd1e7095df69110b92096e5f44ad392ca09b0679841e60cea2ab6be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Cooling</topic><topic>Heart</topic><topic>Humans</topic><topic>Sensitivity analysis</topic><topic>Transient analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sher, A A</creatorcontrib><creatorcontrib>Cooling, M T</creatorcontrib><creatorcontrib>Bethwaite, B</creatorcontrib><creatorcontrib>Tan, J</creatorcontrib><creatorcontrib>Peachey, T</creatorcontrib><creatorcontrib>Enticott, C</creatorcontrib><creatorcontrib>Garic, S</creatorcontrib><creatorcontrib>Gavaghan, D J</creatorcontrib><creatorcontrib>Noble, D</creatorcontrib><creatorcontrib>Abramson, D</creatorcontrib><creatorcontrib>Crampin, E J</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sher, A A</au><au>Cooling, M T</au><au>Bethwaite, B</au><au>Tan, J</au><au>Peachey, T</au><au>Enticott, C</au><au>Garic, S</au><au>Gavaghan, D J</au><au>Noble, D</au><au>Abramson, D</au><au>Crampin, E J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global sensitivity tool for cardiac cell modeling: Application to ionic current balance and hypertrophic signaling</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>1498</spage><epage>1502</epage><pages>1498-1502</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Cardiovascular diseases are the major cause of death in the developed countries. Identifying key cellular processes involved in generation of the electrical signal and in regulation of signal transduction pathways is essential for unraveling the underlying mechanisms of heart rhythm behavior. Computational cardiac models provide important insights into cardiovascular function and disease. Sensitivity analysis presents a key tool for exploring the large parameter space of such models, in order to determine the key factors determining and controlling the underlying physiological processes. We developed a new global sensitivity analysis tool which implements the Morris method, a global sensitivity screening algorithm, onto a Nimrod platform, which is a distributed resources software toolkit. The newly developed tool has been validated using the model of IP3-calcineurin signal transduction pathway model which has 30 parameters. The key driving factors of the IP3 transient behaviour have been calculated and confirmed to agree with previously published data. We next demonstrated the use of this method as an assessment tool for characterizing the structure of cardiac ionic models. In three latest human ventricular myocyte models, we examined the contribution of transmembrane currents to the shape of the electrical signal (i.e. on the action potential duration). The resulting profiles of the ionic current balance demonstrated the highly nonlinear nature of cardiac ionic models and identified key players in different models. Such profiling suggests new avenues for development of methodologies to predict drug action effects in cardiac cells.</abstract><pub>IEEE</pub><pmid>21096366</pmid><doi>10.1109/IEMBS.2010.5626841</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, p.1498-1502
issn 1094-687X
1558-4615
language eng
recordid cdi_ieee_primary_5626841
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Computational modeling
Cooling
Heart
Humans
Sensitivity analysis
Transient analysis
title A global sensitivity tool for cardiac cell modeling: Application to ionic current balance and hypertrophic signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20sensitivity%20tool%20for%20cardiac%20cell%20modeling:%20Application%20to%20ionic%20current%20balance%20and%20hypertrophic%20signaling&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Sher,%20A%20A&rft.date=2010-01-01&rft.spage=1498&rft.epage=1502&rft.pages=1498-1502&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5626841&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&rft_dat=%3Cieee_6IE%3E5626841%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i370t-16f32d6d4dd1e7095df69110b92096e5f44ad392ca09b0679841e60cea2ab6be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21096366&rft_ieee_id=5626841&rfr_iscdi=true