Loading…
Towards non-invasive EIT imaging of domains with deformable boundaries
We investigate on the use of the Domain Embedding Method (DEM) for the forward modelling in EIT. This approach is suitably configured to overcome the model meshing bottleneck since it does not require that the mesh on the domain is adapted to the boundary surface. This is of crucial importance for,...
Saved in:
Published in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, p.4991-4995 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate on the use of the Domain Embedding Method (DEM) for the forward modelling in EIT. This approach is suitably configured to overcome the model meshing bottleneck since it does not require that the mesh on the domain is adapted to the boundary surface. This is of crucial importance for, e.g., clinical applications of EIT, as it avoids tedious and time-consuming (re-)meshing procedures. The suggested DEM approach can accommodate arbitrary yet Lipschitz smooth boundary surfaces and is not limited to polygonal domains. For the discretisation purposes, we employ B-splines as they allow for arbitrary accuracy by raising the polynomial degree and are easy to implement due to their inherent piecewise polynomial structure. Numerical experiments confirm that a B-spline discretization yields, similarly to conventional Finite Difference discretizations, increasing condition numbers of the system matrix with respect to the discretisation levels. Fortunately, multiresolution ideas based on B-splines allow for optimal wavelet preconditioning. |
---|---|
ISSN: | 1094-687X 1558-4615 |
DOI: | 10.1109/IEMBS.2010.5627207 |