Loading…
Development of a pediatric cardiac computer aided auscultation decision support system
Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health...
Saved in:
Published in: | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, p.6078-6082 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343 |
---|---|
cites | |
container_end_page | 6082 |
container_issue | |
container_start_page | 6078 |
container_title | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology |
container_volume | |
creator | Pretorius, Eugene Cronje, Matthys L Strydom, Otto |
description | Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier. |
doi_str_mv | 10.1109/IEMBS.2010.5627633 |
format | article |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5627633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5627633</ieee_id><sourcerecordid>5627633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1L9AE_ABv_QIqvfR2nSygFKhWxoELsKtu5kYyaJoodpP49QVRiNWd0pFkMYzcgZgBifrdavj68z6QYus6lyZU6YRNAiYggUZ6yMWhdZJiDPvsXCs8HIeaY5YX5HLFJjF9CSCE0XLKRHIwBWYzZxyN9065pa9on3lTc8pbKYFMXPPe2G3DIpm77RB23oaSS2z76fpdsCs2el-RD_IXYt23TJR4PMVF9xS4qu4t0fcwp2zwtN4uXbP32vFrcrzOvCpky0qUzrpAeHZZQOQMarSIQzlm0ZD1ZpzWaOegchChMRRpF5StnjVGopuz2bzYQ0bbtQm27w_Z4k_oBpMdYPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a pediatric cardiac computer aided auscultation decision support system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pretorius, Eugene ; Cronje, Matthys L ; Strydom, Otto</creator><creatorcontrib>Pretorius, Eugene ; Cronje, Matthys L ; Strydom, Otto</creatorcontrib><description>Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5627633</identifier><identifier>PMID: 21097128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Band pass filters ; Heart ; Noise ; Pathology ; Pediatrics ; Sensitivity</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, p.6078-6082</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5627633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5627633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pretorius, Eugene</creatorcontrib><creatorcontrib>Cronje, Matthys L</creatorcontrib><creatorcontrib>Strydom, Otto</creatorcontrib><title>Development of a pediatric cardiac computer aided auscultation decision support system</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><description>Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier.</description><subject>Artificial neural networks</subject><subject>Band pass filters</subject><subject>Heart</subject><subject>Noise</subject><subject>Pathology</subject><subject>Pediatrics</subject><subject>Sensitivity</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtOwzAURM1L9AE_ABv_QIqvfR2nSygFKhWxoELsKtu5kYyaJoodpP49QVRiNWd0pFkMYzcgZgBifrdavj68z6QYus6lyZU6YRNAiYggUZ6yMWhdZJiDPvsXCs8HIeaY5YX5HLFJjF9CSCE0XLKRHIwBWYzZxyN9065pa9on3lTc8pbKYFMXPPe2G3DIpm77RB23oaSS2z76fpdsCs2el-RD_IXYt23TJR4PMVF9xS4qu4t0fcwp2zwtN4uXbP32vFrcrzOvCpky0qUzrpAeHZZQOQMarSIQzlm0ZD1ZpzWaOegchChMRRpF5StnjVGopuz2bzYQ0bbtQm27w_Z4k_oBpMdYPg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Pretorius, Eugene</creator><creator>Cronje, Matthys L</creator><creator>Strydom, Otto</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Development of a pediatric cardiac computer aided auscultation decision support system</title><author>Pretorius, Eugene ; Cronje, Matthys L ; Strydom, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Band pass filters</topic><topic>Heart</topic><topic>Noise</topic><topic>Pathology</topic><topic>Pediatrics</topic><topic>Sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Pretorius, Eugene</creatorcontrib><creatorcontrib>Cronje, Matthys L</creatorcontrib><creatorcontrib>Strydom, Otto</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pretorius, Eugene</au><au>Cronje, Matthys L</au><au>Strydom, Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a pediatric cardiac computer aided auscultation decision support system</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>6078</spage><epage>6082</epage><pages>6078-6082</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier.</abstract><pub>IEEE</pub><pmid>21097128</pmid><doi>10.1109/IEMBS.2010.5627633</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, p.6078-6082 |
issn | 1094-687X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_5627633 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Band pass filters Heart Noise Pathology Pediatrics Sensitivity |
title | Development of a pediatric cardiac computer aided auscultation decision support system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20pediatric%20cardiac%20computer%20aided%20auscultation%20decision%20support%20system&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Pretorius,%20Eugene&rft.date=2010-01-01&rft.spage=6078&rft.epage=6082&rft.pages=6078-6082&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5627633&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&rft_dat=%3Cieee_6IE%3E5627633%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21097128&rft_ieee_id=5627633&rfr_iscdi=true |