Loading…

Development of a pediatric cardiac computer aided auscultation decision support system

Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health...

Full description

Saved in:
Bibliographic Details
Published in:2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010-01, p.6078-6082
Main Authors: Pretorius, Eugene, Cronje, Matthys L, Strydom, Otto
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343
cites
container_end_page 6082
container_issue
container_start_page 6078
container_title 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
container_volume
creator Pretorius, Eugene
Cronje, Matthys L
Strydom, Otto
description Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier.
doi_str_mv 10.1109/IEMBS.2010.5627633
format article
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5627633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5627633</ieee_id><sourcerecordid>5627633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1L9AE_ABv_QIqvfR2nSygFKhWxoELsKtu5kYyaJoodpP49QVRiNWd0pFkMYzcgZgBifrdavj68z6QYus6lyZU6YRNAiYggUZ6yMWhdZJiDPvsXCs8HIeaY5YX5HLFJjF9CSCE0XLKRHIwBWYzZxyN9065pa9on3lTc8pbKYFMXPPe2G3DIpm77RB23oaSS2z76fpdsCs2el-RD_IXYt23TJR4PMVF9xS4qu4t0fcwp2zwtN4uXbP32vFrcrzOvCpky0qUzrpAeHZZQOQMarSIQzlm0ZD1ZpzWaOegchChMRRpF5StnjVGopuz2bzYQ0bbtQm27w_Z4k_oBpMdYPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a pediatric cardiac computer aided auscultation decision support system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pretorius, Eugene ; Cronje, Matthys L ; Strydom, Otto</creator><creatorcontrib>Pretorius, Eugene ; Cronje, Matthys L ; Strydom, Otto</creatorcontrib><description>Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 1424441234</identifier><identifier>ISBN: 9781424441235</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 1424441242</identifier><identifier>EISBN: 9781424441242</identifier><identifier>DOI: 10.1109/IEMBS.2010.5627633</identifier><identifier>PMID: 21097128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Band pass filters ; Heart ; Noise ; Pathology ; Pediatrics ; Sensitivity</subject><ispartof>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, p.6078-6082</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5627633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5627633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pretorius, Eugene</creatorcontrib><creatorcontrib>Cronje, Matthys L</creatorcontrib><creatorcontrib>Strydom, Otto</creatorcontrib><title>Development of a pediatric cardiac computer aided auscultation decision support system</title><title>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</title><addtitle>IEMBS</addtitle><description>Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier.</description><subject>Artificial neural networks</subject><subject>Band pass filters</subject><subject>Heart</subject><subject>Noise</subject><subject>Pathology</subject><subject>Pediatrics</subject><subject>Sensitivity</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>1424441234</isbn><isbn>9781424441235</isbn><isbn>1424441242</isbn><isbn>9781424441242</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtOwzAURM1L9AE_ABv_QIqvfR2nSygFKhWxoELsKtu5kYyaJoodpP49QVRiNWd0pFkMYzcgZgBifrdavj68z6QYus6lyZU6YRNAiYggUZ6yMWhdZJiDPvsXCs8HIeaY5YX5HLFJjF9CSCE0XLKRHIwBWYzZxyN9065pa9on3lTc8pbKYFMXPPe2G3DIpm77RB23oaSS2z76fpdsCs2el-RD_IXYt23TJR4PMVF9xS4qu4t0fcwp2zwtN4uXbP32vFrcrzOvCpky0qUzrpAeHZZQOQMarSIQzlm0ZD1ZpzWaOegchChMRRpF5StnjVGopuz2bzYQ0bbtQm27w_Z4k_oBpMdYPg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Pretorius, Eugene</creator><creator>Cronje, Matthys L</creator><creator>Strydom, Otto</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Development of a pediatric cardiac computer aided auscultation decision support system</title><author>Pretorius, Eugene ; Cronje, Matthys L ; Strydom, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Band pass filters</topic><topic>Heart</topic><topic>Noise</topic><topic>Pathology</topic><topic>Pediatrics</topic><topic>Sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Pretorius, Eugene</creatorcontrib><creatorcontrib>Cronje, Matthys L</creatorcontrib><creatorcontrib>Strydom, Otto</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pretorius, Eugene</au><au>Cronje, Matthys L</au><au>Strydom, Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a pediatric cardiac computer aided auscultation decision support system</atitle><jtitle>2010 Annual International Conference of the IEEE Engineering in Medicine and Biology</jtitle><stitle>IEMBS</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>6078</spage><epage>6082</epage><pages>6078-6082</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>1424441234</isbn><isbn>9781424441235</isbn><eisbn>1424441242</eisbn><eisbn>9781424441242</eisbn><abstract>Developing countries have a large population of children living with undiagnosed heart murmurs. As a result of an accompanying skills shortage, most of these children will not get the necessary treatment. The objective of this paper was to develop a decision support system. This could enable health care providers in developing countries with tools to screen large amounts of children without the need for expensive equipment or specialist skills. For this purpose an algorithm was designed and tested to detect heart murmurs in digitally recorded signals. A specificity of 94% and a sensitivity of 91% were achieved using novel signal processing techniques and an ensemble of neural networks as classifier.</abstract><pub>IEEE</pub><pmid>21097128</pmid><doi>10.1109/IEMBS.2010.5627633</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010-01, p.6078-6082
issn 1094-687X
1558-4615
language eng
recordid cdi_ieee_primary_5627633
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Band pass filters
Heart
Noise
Pathology
Pediatrics
Sensitivity
title Development of a pediatric cardiac computer aided auscultation decision support system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20pediatric%20cardiac%20computer%20aided%20auscultation%20decision%20support%20system&rft.jtitle=2010%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology&rft.au=Pretorius,%20Eugene&rft.date=2010-01-01&rft.spage=6078&rft.epage=6082&rft.pages=6078-6082&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441234&rft.isbn_list=9781424441235&rft_id=info:doi/10.1109/IEMBS.2010.5627633&rft.eisbn=1424441242&rft.eisbn_list=9781424441242&rft_dat=%3Cieee_6IE%3E5627633%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-e5db7b82c4b4d1fb7154a3e10bba4aeaceab5547915610087fe540fcfba77343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21097128&rft_ieee_id=5627633&rfr_iscdi=true