Loading…

Fault Prediction Based on Data-Driven Technique

This paper presents principal component analysis (PCA), some improvement of PCA and the development of PCA. PCA does not depend on the accurate mathematical model, is able to implement the feature extraction of the complex process data, and establishes a principal component model of the correspondin...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin Luhui, Ma Jie
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1001
container_issue
container_start_page 997
container_title
container_volume
creator Lin Luhui
Ma Jie
description This paper presents principal component analysis (PCA), some improvement of PCA and the development of PCA. PCA does not depend on the accurate mathematical model, is able to implement the feature extraction of the complex process data, and establishes a principal component model of the corresponding process. It can achieve the extraction of the system information and eliminate the interference the system. So there is the existence of a good applications prospect in the complex process of fault diagnosis and prediction maintain.
doi_str_mv 10.1109/iCECE.2010.253
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5630495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5630495</ieee_id><sourcerecordid>5630495</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1f5d3452983d5e56f4403082e5eb4c9e6897c752198e4ea6f96b56bb3f4a5d173</originalsourceid><addsrcrecordid>eNo1jr1Ow0AQhA8hJCBxS0PjF3ByP7vn2xIcB5AikcJ9dPatxaFgwHaQeHtOAqaZ-ZqZEeJGyZVSktaxqqt6pWVijeZMZFQ6BRrAOqf0ubj-B0mXIpumV5kEqLWiK7He-tNxzvcjh9jN8X3I7_3EIU9h42dfbMb4xUPecPcyxM8TL8VF748TZ3--EM22bqrHYvf88FTd7YpIci5Uj8GkCXImIKPtAaSRTjNyCx2xdVR2JaYHjoG97cm2aNvW9OAxqNIsxO1vbWTmw8cY3_z4fUBrJBCaH8NiQis</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault Prediction Based on Data-Driven Technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lin Luhui ; Ma Jie</creator><creatorcontrib>Lin Luhui ; Ma Jie</creatorcontrib><description>This paper presents principal component analysis (PCA), some improvement of PCA and the development of PCA. PCA does not depend on the accurate mathematical model, is able to implement the feature extraction of the complex process data, and establishes a principal component model of the corresponding process. It can achieve the extraction of the system information and eliminate the interference the system. So there is the existence of a good applications prospect in the complex process of fault diagnosis and prediction maintain.</description><identifier>ISBN: 1424468809</identifier><identifier>ISBN: 9781424468805</identifier><identifier>EISBN: 9781424468812</identifier><identifier>EISBN: 0769540317</identifier><identifier>EISBN: 9780769540313</identifier><identifier>EISBN: 1424468817</identifier><identifier>DOI: 10.1109/iCECE.2010.253</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data models ; data-driven ; Fault diagnosis ; fault prediction ; improvement ; Mathematical model ; Monitoring ; Principal component analysis ; principal component analysis (PCA)</subject><ispartof>2010 International Conference on Electrical and Control Engineering, 2010, p.997-1001</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5630495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5630495$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin Luhui</creatorcontrib><creatorcontrib>Ma Jie</creatorcontrib><title>Fault Prediction Based on Data-Driven Technique</title><title>2010 International Conference on Electrical and Control Engineering</title><addtitle>ICECE</addtitle><description>This paper presents principal component analysis (PCA), some improvement of PCA and the development of PCA. PCA does not depend on the accurate mathematical model, is able to implement the feature extraction of the complex process data, and establishes a principal component model of the corresponding process. It can achieve the extraction of the system information and eliminate the interference the system. So there is the existence of a good applications prospect in the complex process of fault diagnosis and prediction maintain.</description><subject>Artificial neural networks</subject><subject>Data models</subject><subject>data-driven</subject><subject>Fault diagnosis</subject><subject>fault prediction</subject><subject>improvement</subject><subject>Mathematical model</subject><subject>Monitoring</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><isbn>1424468809</isbn><isbn>9781424468805</isbn><isbn>9781424468812</isbn><isbn>0769540317</isbn><isbn>9780769540313</isbn><isbn>1424468817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jr1Ow0AQhA8hJCBxS0PjF3ByP7vn2xIcB5AikcJ9dPatxaFgwHaQeHtOAqaZ-ZqZEeJGyZVSktaxqqt6pWVijeZMZFQ6BRrAOqf0ubj-B0mXIpumV5kEqLWiK7He-tNxzvcjh9jN8X3I7_3EIU9h42dfbMb4xUPecPcyxM8TL8VF748TZ3--EM22bqrHYvf88FTd7YpIci5Uj8GkCXImIKPtAaSRTjNyCx2xdVR2JaYHjoG97cm2aNvW9OAxqNIsxO1vbWTmw8cY3_z4fUBrJBCaH8NiQis</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Lin Luhui</creator><creator>Ma Jie</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Fault Prediction Based on Data-Driven Technique</title><author>Lin Luhui ; Ma Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1f5d3452983d5e56f4403082e5eb4c9e6897c752198e4ea6f96b56bb3f4a5d173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Data models</topic><topic>data-driven</topic><topic>Fault diagnosis</topic><topic>fault prediction</topic><topic>improvement</topic><topic>Mathematical model</topic><topic>Monitoring</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin Luhui</creatorcontrib><creatorcontrib>Ma Jie</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin Luhui</au><au>Ma Jie</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault Prediction Based on Data-Driven Technique</atitle><btitle>2010 International Conference on Electrical and Control Engineering</btitle><stitle>ICECE</stitle><date>2010-06</date><risdate>2010</risdate><spage>997</spage><epage>1001</epage><pages>997-1001</pages><isbn>1424468809</isbn><isbn>9781424468805</isbn><eisbn>9781424468812</eisbn><eisbn>0769540317</eisbn><eisbn>9780769540313</eisbn><eisbn>1424468817</eisbn><abstract>This paper presents principal component analysis (PCA), some improvement of PCA and the development of PCA. PCA does not depend on the accurate mathematical model, is able to implement the feature extraction of the complex process data, and establishes a principal component model of the corresponding process. It can achieve the extraction of the system information and eliminate the interference the system. So there is the existence of a good applications prospect in the complex process of fault diagnosis and prediction maintain.</abstract><pub>IEEE</pub><doi>10.1109/iCECE.2010.253</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424468809
ispartof 2010 International Conference on Electrical and Control Engineering, 2010, p.997-1001
issn
language eng
recordid cdi_ieee_primary_5630495
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Data models
data-driven
Fault diagnosis
fault prediction
improvement
Mathematical model
Monitoring
Principal component analysis
principal component analysis (PCA)
title Fault Prediction Based on Data-Driven Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20Prediction%20Based%20on%20Data-Driven%20Technique&rft.btitle=2010%20International%20Conference%20on%20Electrical%20and%20Control%20Engineering&rft.au=Lin%20Luhui&rft.date=2010-06&rft.spage=997&rft.epage=1001&rft.pages=997-1001&rft.isbn=1424468809&rft.isbn_list=9781424468805&rft_id=info:doi/10.1109/iCECE.2010.253&rft.eisbn=9781424468812&rft.eisbn_list=0769540317&rft.eisbn_list=9780769540313&rft.eisbn_list=1424468817&rft_dat=%3Cieee_6IE%3E5630495%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-1f5d3452983d5e56f4403082e5eb4c9e6897c752198e4ea6f96b56bb3f4a5d173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5630495&rfr_iscdi=true