Loading…
Particle Swarm Optimisation of Mel-frequency Cepstral Coefficients computation for the classification of asphyxiated infant cry
Feature extraction techniques for input representation to diagnose infant diseases have received significant attention recently. Mel Frequency Cepstral Coefficients (MFCC) is one of the most popular feature extraction techniques due to its representation method being very similar to the human audito...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 995 |
container_issue | |
container_start_page | 991 |
container_title | |
container_volume | 3 |
creator | Zabidi, A Mansor, W Lee, Y K Mohd Yassin, A I Sahak, R |
description | Feature extraction techniques for input representation to diagnose infant diseases have received significant attention recently. Mel Frequency Cepstral Coefficients (MFCC) is one of the most popular feature extraction techniques due to its representation method being very similar to the human auditory system. The MFCC method for feature extraction depends on several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affects the way the features are represented, and in turn, affects the performance of the classifier for diagnosis of the disease. In this paper, the Particle Swarm Optimization (PSO) algorithm was used to optimise the parameters of the MFCC feature extraction method for classifying infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The accuracy of these classifiers was then used to guide the PSO optimization. Our results show that the optimization of MFCC computation using PSO yielded 93.9% accuracy, an improvement of 1.45% over typical MFCC parameter settings using the same classifier. |
doi_str_mv | 10.1109/BMEI.2010.5639674 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5639674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5639674</ieee_id><sourcerecordid>5639674</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-58cb0fd3f9e04fd218b200e4f35da1f17eb963a5ca64c76b612163c0f9576fd03</originalsourceid><addsrcrecordid>eNo9UEtLAzEYjC-w1v4A8ZI_sDXJ5rE5aqlaaKmgnks2-4VG9mUS0T351y20di7DMI_DIHRDyZRSou8eVvPFlJGdFDLXUvETNNGqoJxxLrlW4hSNqOZFxjRjZ-jq3xD0_GhQfokmMX6QHbhgQqkR-n0xIXlbA379NqHB6z75xkeTfNfizuEV1JkL8PkFrR3wDPqYgqnxrAPnvPXQpoht1_RfaV9xXcBpC9jWJka_ixyXTOy3w483CSrsW2fahG0YrtGFM3WEyYHH6P1x_jZ7zpbrp8Xsfpl5qkTKRGFL4qrcaSDcVYwWJSMEuMtFZaijCkotcyOskdwqWUrKqMwtcVoo6SqSj9HtftcDwKYPvjFh2By-zP8AXv1mxQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Particle Swarm Optimisation of Mel-frequency Cepstral Coefficients computation for the classification of asphyxiated infant cry</title><source>IEEE Xplore All Conference Series</source><creator>Zabidi, A ; Mansor, W ; Lee, Y K ; Mohd Yassin, A I ; Sahak, R</creator><creatorcontrib>Zabidi, A ; Mansor, W ; Lee, Y K ; Mohd Yassin, A I ; Sahak, R</creatorcontrib><description>Feature extraction techniques for input representation to diagnose infant diseases have received significant attention recently. Mel Frequency Cepstral Coefficients (MFCC) is one of the most popular feature extraction techniques due to its representation method being very similar to the human auditory system. The MFCC method for feature extraction depends on several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affects the way the features are represented, and in turn, affects the performance of the classifier for diagnosis of the disease. In this paper, the Particle Swarm Optimization (PSO) algorithm was used to optimise the parameters of the MFCC feature extraction method for classifying infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The accuracy of these classifiers was then used to guide the PSO optimization. Our results show that the optimization of MFCC computation using PSO yielded 93.9% accuracy, an improvement of 1.45% over typical MFCC parameter settings using the same classifier.</description><identifier>ISSN: 1948-2914</identifier><identifier>ISBN: 1424464951</identifier><identifier>ISBN: 9781424464951</identifier><identifier>EISSN: 1948-2922</identifier><identifier>EISBN: 9781424464975</identifier><identifier>EISBN: 1424464986</identifier><identifier>EISBN: 1424464978</identifier><identifier>EISBN: 9781424464982</identifier><identifier>DOI: 10.1109/BMEI.2010.5639674</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Asphyxia ; Classification algorithms ; Feature extraction ; Filter bank ; Mel frequency cepstral coefficient ; Mel Frequency Cepstral Coefficients (MFCC) ; Multilayer Perceptron (MLP) ; Optimization ; Particle Swarm Optimization (PSO)</subject><ispartof>2010 3rd International Conference on Biomedical Engineering and Informatics, 2010, Vol.3, p.991-995</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5639674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5639674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zabidi, A</creatorcontrib><creatorcontrib>Mansor, W</creatorcontrib><creatorcontrib>Lee, Y K</creatorcontrib><creatorcontrib>Mohd Yassin, A I</creatorcontrib><creatorcontrib>Sahak, R</creatorcontrib><title>Particle Swarm Optimisation of Mel-frequency Cepstral Coefficients computation for the classification of asphyxiated infant cry</title><title>2010 3rd International Conference on Biomedical Engineering and Informatics</title><addtitle>BMEI</addtitle><description>Feature extraction techniques for input representation to diagnose infant diseases have received significant attention recently. Mel Frequency Cepstral Coefficients (MFCC) is one of the most popular feature extraction techniques due to its representation method being very similar to the human auditory system. The MFCC method for feature extraction depends on several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affects the way the features are represented, and in turn, affects the performance of the classifier for diagnosis of the disease. In this paper, the Particle Swarm Optimization (PSO) algorithm was used to optimise the parameters of the MFCC feature extraction method for classifying infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The accuracy of these classifiers was then used to guide the PSO optimization. Our results show that the optimization of MFCC computation using PSO yielded 93.9% accuracy, an improvement of 1.45% over typical MFCC parameter settings using the same classifier.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Asphyxia</subject><subject>Classification algorithms</subject><subject>Feature extraction</subject><subject>Filter bank</subject><subject>Mel frequency cepstral coefficient</subject><subject>Mel Frequency Cepstral Coefficients (MFCC)</subject><subject>Multilayer Perceptron (MLP)</subject><subject>Optimization</subject><subject>Particle Swarm Optimization (PSO)</subject><issn>1948-2914</issn><issn>1948-2922</issn><isbn>1424464951</isbn><isbn>9781424464951</isbn><isbn>9781424464975</isbn><isbn>1424464986</isbn><isbn>1424464978</isbn><isbn>9781424464982</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UEtLAzEYjC-w1v4A8ZI_sDXJ5rE5aqlaaKmgnks2-4VG9mUS0T351y20di7DMI_DIHRDyZRSou8eVvPFlJGdFDLXUvETNNGqoJxxLrlW4hSNqOZFxjRjZ-jq3xD0_GhQfokmMX6QHbhgQqkR-n0xIXlbA379NqHB6z75xkeTfNfizuEV1JkL8PkFrR3wDPqYgqnxrAPnvPXQpoht1_RfaV9xXcBpC9jWJka_ixyXTOy3w483CSrsW2fahG0YrtGFM3WEyYHH6P1x_jZ7zpbrp8Xsfpl5qkTKRGFL4qrcaSDcVYwWJSMEuMtFZaijCkotcyOskdwqWUrKqMwtcVoo6SqSj9HtftcDwKYPvjFh2By-zP8AXv1mxQ</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Zabidi, A</creator><creator>Mansor, W</creator><creator>Lee, Y K</creator><creator>Mohd Yassin, A I</creator><creator>Sahak, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Particle Swarm Optimisation of Mel-frequency Cepstral Coefficients computation for the classification of asphyxiated infant cry</title><author>Zabidi, A ; Mansor, W ; Lee, Y K ; Mohd Yassin, A I ; Sahak, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-58cb0fd3f9e04fd218b200e4f35da1f17eb963a5ca64c76b612163c0f9576fd03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Asphyxia</topic><topic>Classification algorithms</topic><topic>Feature extraction</topic><topic>Filter bank</topic><topic>Mel frequency cepstral coefficient</topic><topic>Mel Frequency Cepstral Coefficients (MFCC)</topic><topic>Multilayer Perceptron (MLP)</topic><topic>Optimization</topic><topic>Particle Swarm Optimization (PSO)</topic><toplevel>online_resources</toplevel><creatorcontrib>Zabidi, A</creatorcontrib><creatorcontrib>Mansor, W</creatorcontrib><creatorcontrib>Lee, Y K</creatorcontrib><creatorcontrib>Mohd Yassin, A I</creatorcontrib><creatorcontrib>Sahak, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zabidi, A</au><au>Mansor, W</au><au>Lee, Y K</au><au>Mohd Yassin, A I</au><au>Sahak, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Particle Swarm Optimisation of Mel-frequency Cepstral Coefficients computation for the classification of asphyxiated infant cry</atitle><btitle>2010 3rd International Conference on Biomedical Engineering and Informatics</btitle><stitle>BMEI</stitle><date>2010-10</date><risdate>2010</risdate><volume>3</volume><spage>991</spage><epage>995</epage><pages>991-995</pages><issn>1948-2914</issn><eissn>1948-2922</eissn><isbn>1424464951</isbn><isbn>9781424464951</isbn><eisbn>9781424464975</eisbn><eisbn>1424464986</eisbn><eisbn>1424464978</eisbn><eisbn>9781424464982</eisbn><abstract>Feature extraction techniques for input representation to diagnose infant diseases have received significant attention recently. Mel Frequency Cepstral Coefficients (MFCC) is one of the most popular feature extraction techniques due to its representation method being very similar to the human auditory system. The MFCC method for feature extraction depends on several important parameter settings, namely the number of filter banks, and the number of coefficients used in the final representation. These settings affects the way the features are represented, and in turn, affects the performance of the classifier for diagnosis of the disease. In this paper, the Particle Swarm Optimization (PSO) algorithm was used to optimise the parameters of the MFCC feature extraction method for classifying infants with asphyxia. The extracted MFCC features were then used to train several MLP classifiers over different initialization values. The accuracy of these classifiers was then used to guide the PSO optimization. Our results show that the optimization of MFCC computation using PSO yielded 93.9% accuracy, an improvement of 1.45% over typical MFCC parameter settings using the same classifier.</abstract><pub>IEEE</pub><doi>10.1109/BMEI.2010.5639674</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-2914 |
ispartof | 2010 3rd International Conference on Biomedical Engineering and Informatics, 2010, Vol.3, p.991-995 |
issn | 1948-2914 1948-2922 |
language | eng |
recordid | cdi_ieee_primary_5639674 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Artificial neural networks Asphyxia Classification algorithms Feature extraction Filter bank Mel frequency cepstral coefficient Mel Frequency Cepstral Coefficients (MFCC) Multilayer Perceptron (MLP) Optimization Particle Swarm Optimization (PSO) |
title | Particle Swarm Optimisation of Mel-frequency Cepstral Coefficients computation for the classification of asphyxiated infant cry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Particle%20Swarm%20Optimisation%20of%20Mel-frequency%20Cepstral%20Coefficients%20computation%20for%20the%20classification%20of%20asphyxiated%20infant%20cry&rft.btitle=2010%203rd%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Informatics&rft.au=Zabidi,%20A&rft.date=2010-10&rft.volume=3&rft.spage=991&rft.epage=995&rft.pages=991-995&rft.issn=1948-2914&rft.eissn=1948-2922&rft.isbn=1424464951&rft.isbn_list=9781424464951&rft_id=info:doi/10.1109/BMEI.2010.5639674&rft.eisbn=9781424464975&rft.eisbn_list=1424464986&rft.eisbn_list=1424464978&rft.eisbn_list=9781424464982&rft_dat=%3Cieee_CHZPO%3E5639674%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-58cb0fd3f9e04fd218b200e4f35da1f17eb963a5ca64c76b612163c0f9576fd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5639674&rfr_iscdi=true |