Loading…

Finding user groups on the basis of GSM logs - a survey

The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity...

Full description

Saved in:
Bibliographic Details
Main Authors: Deshpande, S S, Dharaskar, R V
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 447
container_issue
container_start_page 444
container_title
container_volume
creator Deshpande, S S
Dharaskar, R V
description The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc.
doi_str_mv 10.1109/CISIM.2010.5643500
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5643500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5643500</ieee_id><sourcerecordid>5643500</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8832dc7b78ba96cef9205ef8a8a61f4b720186720b7bc433f09d2b7da644a5db3</originalsourceid><addsrcrecordid>eNotj8tOwzAURI1QJaDkB2DjH0jx-7FEES2RWrFo95Ud26lRSSq7QerfY4nMYu6czegOAC8YrTBG-q1p9-1uRVBhLhjlCN2BJ8wIY1Jhpe9BpUuYWaIHUOX8jYo4kQzTRyDXcXBx6OGUfYJ9GqdLhuMArycPrcmxQICb_Q6exz7DGhqYp_Trb89gEcw5-2q-S3BYfxyaz3r7tWmb920dNbrWSlHiOmmlskaLzgdNEPdBGWUEDszK8rkSxa20HaM0IO2Ilc4Ixgx3li7B639t9N4fLyn-mHQ7zlPpH_PMRdY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Finding user groups on the basis of GSM logs - a survey</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deshpande, S S ; Dharaskar, R V</creator><creatorcontrib>Deshpande, S S ; Dharaskar, R V</creatorcontrib><description>The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc.</description><identifier>ISBN: 9781424478170</identifier><identifier>ISBN: 1424478170</identifier><identifier>EISBN: 1424478189</identifier><identifier>EISBN: 1424478162</identifier><identifier>EISBN: 9781424478187</identifier><identifier>EISBN: 9781424478163</identifier><identifier>DOI: 10.1109/CISIM.2010.5643500</identifier><language>eng</language><publisher>IEEE</publisher><subject>Affinity Model ; Block Crediting ; Computers ; Context ; Data models ; GSM ; Mobile communication ; Mobile handsets ; Model Formulation ; Prediction algorithms ; Velocity trap</subject><ispartof>2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), 2010, p.444-447</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5643500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5643500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deshpande, S S</creatorcontrib><creatorcontrib>Dharaskar, R V</creatorcontrib><title>Finding user groups on the basis of GSM logs - a survey</title><title>2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM)</title><addtitle>CISIM</addtitle><description>The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc.</description><subject>Affinity Model</subject><subject>Block Crediting</subject><subject>Computers</subject><subject>Context</subject><subject>Data models</subject><subject>GSM</subject><subject>Mobile communication</subject><subject>Mobile handsets</subject><subject>Model Formulation</subject><subject>Prediction algorithms</subject><subject>Velocity trap</subject><isbn>9781424478170</isbn><isbn>1424478170</isbn><isbn>1424478189</isbn><isbn>1424478162</isbn><isbn>9781424478187</isbn><isbn>9781424478163</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAURI1QJaDkB2DjH0jx-7FEES2RWrFo95Ud26lRSSq7QerfY4nMYu6czegOAC8YrTBG-q1p9-1uRVBhLhjlCN2BJ8wIY1Jhpe9BpUuYWaIHUOX8jYo4kQzTRyDXcXBx6OGUfYJ9GqdLhuMArycPrcmxQICb_Q6exz7DGhqYp_Trb89gEcw5-2q-S3BYfxyaz3r7tWmb920dNbrWSlHiOmmlskaLzgdNEPdBGWUEDszK8rkSxa20HaM0IO2Ilc4Ixgx3li7B639t9N4fLyn-mHQ7zlPpH_PMRdY</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Deshpande, S S</creator><creator>Dharaskar, R V</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Finding user groups on the basis of GSM logs - a survey</title><author>Deshpande, S S ; Dharaskar, R V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8832dc7b78ba96cef9205ef8a8a61f4b720186720b7bc433f09d2b7da644a5db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Affinity Model</topic><topic>Block Crediting</topic><topic>Computers</topic><topic>Context</topic><topic>Data models</topic><topic>GSM</topic><topic>Mobile communication</topic><topic>Mobile handsets</topic><topic>Model Formulation</topic><topic>Prediction algorithms</topic><topic>Velocity trap</topic><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, S S</creatorcontrib><creatorcontrib>Dharaskar, R V</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deshpande, S S</au><au>Dharaskar, R V</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding user groups on the basis of GSM logs - a survey</atitle><btitle>2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM)</btitle><stitle>CISIM</stitle><date>2010-10</date><risdate>2010</risdate><spage>444</spage><epage>447</epage><pages>444-447</pages><isbn>9781424478170</isbn><isbn>1424478170</isbn><eisbn>1424478189</eisbn><eisbn>1424478162</eisbn><eisbn>9781424478187</eisbn><eisbn>9781424478163</eisbn><abstract>The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc.</abstract><pub>IEEE</pub><doi>10.1109/CISIM.2010.5643500</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424478170
ispartof 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), 2010, p.444-447
issn
language eng
recordid cdi_ieee_primary_5643500
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Affinity Model
Block Crediting
Computers
Context
Data models
GSM
Mobile communication
Mobile handsets
Model Formulation
Prediction algorithms
Velocity trap
title Finding user groups on the basis of GSM logs - a survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20user%20groups%20on%20the%20basis%20of%20GSM%20logs%20-%20a%20survey&rft.btitle=2010%20International%20Conference%20on%20Computer%20Information%20Systems%20and%20Industrial%20Management%20Applications%20(CISIM)&rft.au=Deshpande,%20S%20S&rft.date=2010-10&rft.spage=444&rft.epage=447&rft.pages=444-447&rft.isbn=9781424478170&rft.isbn_list=1424478170&rft_id=info:doi/10.1109/CISIM.2010.5643500&rft.eisbn=1424478189&rft.eisbn_list=1424478162&rft.eisbn_list=9781424478187&rft.eisbn_list=9781424478163&rft_dat=%3Cieee_6IE%3E5643500%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8832dc7b78ba96cef9205ef8a8a61f4b720186720b7bc433f09d2b7da644a5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5643500&rfr_iscdi=true