Loading…
Finding user groups on the basis of GSM logs - a survey
The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 447 |
container_issue | |
container_start_page | 444 |
container_title | |
container_volume | |
creator | Deshpande, S S Dharaskar, R V |
description | The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc. |
doi_str_mv | 10.1109/CISIM.2010.5643500 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5643500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5643500</ieee_id><sourcerecordid>5643500</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8832dc7b78ba96cef9205ef8a8a61f4b720186720b7bc433f09d2b7da644a5db3</originalsourceid><addsrcrecordid>eNotj8tOwzAURI1QJaDkB2DjH0jx-7FEES2RWrFo95Ud26lRSSq7QerfY4nMYu6czegOAC8YrTBG-q1p9-1uRVBhLhjlCN2BJ8wIY1Jhpe9BpUuYWaIHUOX8jYo4kQzTRyDXcXBx6OGUfYJ9GqdLhuMArycPrcmxQICb_Q6exz7DGhqYp_Trb89gEcw5-2q-S3BYfxyaz3r7tWmb920dNbrWSlHiOmmlskaLzgdNEPdBGWUEDszK8rkSxa20HaM0IO2Ilc4Ixgx3li7B639t9N4fLyn-mHQ7zlPpH_PMRdY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Finding user groups on the basis of GSM logs - a survey</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deshpande, S S ; Dharaskar, R V</creator><creatorcontrib>Deshpande, S S ; Dharaskar, R V</creatorcontrib><description>The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc.</description><identifier>ISBN: 9781424478170</identifier><identifier>ISBN: 1424478170</identifier><identifier>EISBN: 1424478189</identifier><identifier>EISBN: 1424478162</identifier><identifier>EISBN: 9781424478187</identifier><identifier>EISBN: 9781424478163</identifier><identifier>DOI: 10.1109/CISIM.2010.5643500</identifier><language>eng</language><publisher>IEEE</publisher><subject>Affinity Model ; Block Crediting ; Computers ; Context ; Data models ; GSM ; Mobile communication ; Mobile handsets ; Model Formulation ; Prediction algorithms ; Velocity trap</subject><ispartof>2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), 2010, p.444-447</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5643500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5643500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deshpande, S S</creatorcontrib><creatorcontrib>Dharaskar, R V</creatorcontrib><title>Finding user groups on the basis of GSM logs - a survey</title><title>2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM)</title><addtitle>CISIM</addtitle><description>The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc.</description><subject>Affinity Model</subject><subject>Block Crediting</subject><subject>Computers</subject><subject>Context</subject><subject>Data models</subject><subject>GSM</subject><subject>Mobile communication</subject><subject>Mobile handsets</subject><subject>Model Formulation</subject><subject>Prediction algorithms</subject><subject>Velocity trap</subject><isbn>9781424478170</isbn><isbn>1424478170</isbn><isbn>1424478189</isbn><isbn>1424478162</isbn><isbn>9781424478187</isbn><isbn>9781424478163</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAURI1QJaDkB2DjH0jx-7FEES2RWrFo95Ud26lRSSq7QerfY4nMYu6czegOAC8YrTBG-q1p9-1uRVBhLhjlCN2BJ8wIY1Jhpe9BpUuYWaIHUOX8jYo4kQzTRyDXcXBx6OGUfYJ9GqdLhuMArycPrcmxQICb_Q6exz7DGhqYp_Trb89gEcw5-2q-S3BYfxyaz3r7tWmb920dNbrWSlHiOmmlskaLzgdNEPdBGWUEDszK8rkSxa20HaM0IO2Ilc4Ixgx3li7B639t9N4fLyn-mHQ7zlPpH_PMRdY</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Deshpande, S S</creator><creator>Dharaskar, R V</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Finding user groups on the basis of GSM logs - a survey</title><author>Deshpande, S S ; Dharaskar, R V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8832dc7b78ba96cef9205ef8a8a61f4b720186720b7bc433f09d2b7da644a5db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Affinity Model</topic><topic>Block Crediting</topic><topic>Computers</topic><topic>Context</topic><topic>Data models</topic><topic>GSM</topic><topic>Mobile communication</topic><topic>Mobile handsets</topic><topic>Model Formulation</topic><topic>Prediction algorithms</topic><topic>Velocity trap</topic><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, S S</creatorcontrib><creatorcontrib>Dharaskar, R V</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deshpande, S S</au><au>Dharaskar, R V</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding user groups on the basis of GSM logs - a survey</atitle><btitle>2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM)</btitle><stitle>CISIM</stitle><date>2010-10</date><risdate>2010</risdate><spage>444</spage><epage>447</epage><pages>444-447</pages><isbn>9781424478170</isbn><isbn>1424478170</isbn><eisbn>1424478189</eisbn><eisbn>1424478162</eisbn><eisbn>9781424478187</eisbn><eisbn>9781424478163</eisbn><abstract>The technologies of mobile communications and ubiquitous computing pervade our society and wireless networks sense the movement of people and vehicles, generating large volumes of mobility data. Miniaturization, wearability, pervasiveness of mobile devices are producing traces of our mobile activity, with increasing positioning accuracy and semantic richness: location data from mobile phones (Global System for Mobile Communications: GSM cell positions), Geographic Positioning System (GPS) tracks from mobile devices receiving geo-positions from satellites, etc. The objective of this paper is to review the works carried out by different group of researchers using varied techniques in Discovering User context, Mobility Prediction of Mobile users, Discovering social groups, Fraud detection in mobile communications networks etc.</abstract><pub>IEEE</pub><doi>10.1109/CISIM.2010.5643500</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424478170 |
ispartof | 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), 2010, p.444-447 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5643500 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Affinity Model Block Crediting Computers Context Data models GSM Mobile communication Mobile handsets Model Formulation Prediction algorithms Velocity trap |
title | Finding user groups on the basis of GSM logs - a survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20user%20groups%20on%20the%20basis%20of%20GSM%20logs%20-%20a%20survey&rft.btitle=2010%20International%20Conference%20on%20Computer%20Information%20Systems%20and%20Industrial%20Management%20Applications%20(CISIM)&rft.au=Deshpande,%20S%20S&rft.date=2010-10&rft.spage=444&rft.epage=447&rft.pages=444-447&rft.isbn=9781424478170&rft.isbn_list=1424478170&rft_id=info:doi/10.1109/CISIM.2010.5643500&rft.eisbn=1424478189&rft.eisbn_list=1424478162&rft.eisbn_list=9781424478187&rft.eisbn_list=9781424478163&rft_dat=%3Cieee_6IE%3E5643500%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8832dc7b78ba96cef9205ef8a8a61f4b720186720b7bc433f09d2b7da644a5db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5643500&rfr_iscdi=true |