Loading…

Extreme-Scale AMR

Many problems are characterized by dynamics occurring on a wide range of length and time scales. One approach to overcoming the tyranny of scales is adaptive mesh refinement/coarsening (AMR), which dynamically adapts the mesh to resolve features of interest. However, the benefits of AMR are difficul...

Full description

Saved in:
Bibliographic Details
Main Authors: Burstedde, Carsten, Ghattas, Omar, Gurnis, Michael, Isaac, Tobin, Stadler, Georg, Warburton, Tim, Wilcox, Lucas
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a193t-7a09d0a27a67e20bec69f41ce3371846f754501ac2c81861b9de3be2fb5eb2ca3
cites
container_end_page 12
container_issue
container_start_page 1
container_title
container_volume
creator Burstedde, Carsten
Ghattas, Omar
Gurnis, Michael
Isaac, Tobin
Stadler, Georg
Warburton, Tim
Wilcox, Lucas
description Many problems are characterized by dynamics occurring on a wide range of length and time scales. One approach to overcoming the tyranny of scales is adaptive mesh refinement/coarsening (AMR), which dynamically adapts the mesh to resolve features of interest. However, the benefits of AMR are difficult to achieve in practice, particularly on the petascale computers that are essential for difficult problems. Due to the complex dynamic data structures and frequent load balancing, scaling dynamic AMR to hundreds of thousands of cores has long been considered a challenge. Another difficulty is extending parallel AMR techniques to high-order-accurate, complex-geometry-respecting methods that are favored for many classes of problems. Here we present new parallel algorithms for parallel dynamic AMR on forest-ofoctrees geometries with arbitrary-order continuous and discontinuous finite/spectral element discretizations. The implementations of these algorithms exhibit excellent weak and strong scaling to over 224,000 Cray XT5 cores for multiscale geophysics problems.
doi_str_mv 10.1109/SC.2010.25
format conference_proceeding
fullrecord <record><control><sourceid>acm_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5644907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5644907</ieee_id><sourcerecordid>acm_books_10_1109_SC_2010_25</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-7a09d0a27a67e20bec69f41ce3371846f754501ac2c81861b9de3be2fb5eb2ca3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxdeq0Fpz0KsXwZOH1J3Zr8yxhPoBFcHoedndTiDaUEl60P_elEqvzuUx_B6PxxPiEuQMQNJdVc5QDg-aI3EGGrV2xpAbiQmCdblWyh2LjFxxYHRyYEhjkfX9hxyOnFZGTcTF4nvbcct5lcKar-fPr-fitA7rnrM_nYr3-8Vb-ZgvXx6eyvkyD0Bqm7sgaSUDumAdo4ycLNUaEg8VoNC2dkYbCSFhKqCwEGnFKjLW0XDEFNRUXO1zG2b2X13Thu7HG6s1STfQ2z0NqfVxs_nsPUi_28BXpd9t4NH42DVcD96b_73qF1wQUcQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extreme-Scale AMR</title><source>IEEE Xplore All Conference Series</source><creator>Burstedde, Carsten ; Ghattas, Omar ; Gurnis, Michael ; Isaac, Tobin ; Stadler, Georg ; Warburton, Tim ; Wilcox, Lucas</creator><creatorcontrib>Burstedde, Carsten ; Ghattas, Omar ; Gurnis, Michael ; Isaac, Tobin ; Stadler, Georg ; Warburton, Tim ; Wilcox, Lucas</creatorcontrib><description>Many problems are characterized by dynamics occurring on a wide range of length and time scales. One approach to overcoming the tyranny of scales is adaptive mesh refinement/coarsening (AMR), which dynamically adapts the mesh to resolve features of interest. However, the benefits of AMR are difficult to achieve in practice, particularly on the petascale computers that are essential for difficult problems. Due to the complex dynamic data structures and frequent load balancing, scaling dynamic AMR to hundreds of thousands of cores has long been considered a challenge. Another difficulty is extending parallel AMR techniques to high-order-accurate, complex-geometry-respecting methods that are favored for many classes of problems. Here we present new parallel algorithms for parallel dynamic AMR on forest-ofoctrees geometries with arbitrary-order continuous and discontinuous finite/spectral element discretizations. The implementations of these algorithms exhibit excellent weak and strong scaling to over 224,000 Cray XT5 cores for multiscale geophysics problems.</description><identifier>ISSN: 2167-4329</identifier><identifier>ISBN: 9781424475599</identifier><identifier>ISBN: 1424475597</identifier><identifier>ISBN: 9781424475575</identifier><identifier>ISBN: 1424475570</identifier><identifier>EISSN: 2167-4337</identifier><identifier>EISBN: 1424475597</identifier><identifier>EISBN: 9781424475582</identifier><identifier>EISBN: 9781424475599</identifier><identifier>EISBN: 1424475589</identifier><identifier>DOI: 10.1109/SC.2010.25</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Geometry ; Heuristic algorithms ; Joining processes ; Mathematics of computing ; Mathematics of computing -- Mathematical analysis ; Mathematics of computing -- Mathematical analysis -- Differential equations ; Mathematics of computing -- Mathematical analysis -- Differential equations -- Partial differential equations ; Octrees ; Partitioning algorithms ; Runtime ; Scalability</subject><ispartof>2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, 2010, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a193t-7a09d0a27a67e20bec69f41ce3371846f754501ac2c81861b9de3be2fb5eb2ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5644907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5644907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Burstedde, Carsten</creatorcontrib><creatorcontrib>Ghattas, Omar</creatorcontrib><creatorcontrib>Gurnis, Michael</creatorcontrib><creatorcontrib>Isaac, Tobin</creatorcontrib><creatorcontrib>Stadler, Georg</creatorcontrib><creatorcontrib>Warburton, Tim</creatorcontrib><creatorcontrib>Wilcox, Lucas</creatorcontrib><title>Extreme-Scale AMR</title><title>2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis</title><addtitle>SC</addtitle><description>Many problems are characterized by dynamics occurring on a wide range of length and time scales. One approach to overcoming the tyranny of scales is adaptive mesh refinement/coarsening (AMR), which dynamically adapts the mesh to resolve features of interest. However, the benefits of AMR are difficult to achieve in practice, particularly on the petascale computers that are essential for difficult problems. Due to the complex dynamic data structures and frequent load balancing, scaling dynamic AMR to hundreds of thousands of cores has long been considered a challenge. Another difficulty is extending parallel AMR techniques to high-order-accurate, complex-geometry-respecting methods that are favored for many classes of problems. Here we present new parallel algorithms for parallel dynamic AMR on forest-ofoctrees geometries with arbitrary-order continuous and discontinuous finite/spectral element discretizations. The implementations of these algorithms exhibit excellent weak and strong scaling to over 224,000 Cray XT5 cores for multiscale geophysics problems.</description><subject>Geometry</subject><subject>Heuristic algorithms</subject><subject>Joining processes</subject><subject>Mathematics of computing</subject><subject>Mathematics of computing -- Mathematical analysis</subject><subject>Mathematics of computing -- Mathematical analysis -- Differential equations</subject><subject>Mathematics of computing -- Mathematical analysis -- Differential equations -- Partial differential equations</subject><subject>Octrees</subject><subject>Partitioning algorithms</subject><subject>Runtime</subject><subject>Scalability</subject><issn>2167-4329</issn><issn>2167-4337</issn><isbn>9781424475599</isbn><isbn>1424475597</isbn><isbn>9781424475575</isbn><isbn>1424475570</isbn><isbn>1424475597</isbn><isbn>9781424475582</isbn><isbn>9781424475599</isbn><isbn>1424475589</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqFkM1Lw0AQxdeq0Fpz0KsXwZOH1J3Zr8yxhPoBFcHoedndTiDaUEl60P_elEqvzuUx_B6PxxPiEuQMQNJdVc5QDg-aI3EGGrV2xpAbiQmCdblWyh2LjFxxYHRyYEhjkfX9hxyOnFZGTcTF4nvbcct5lcKar-fPr-fitA7rnrM_nYr3-8Vb-ZgvXx6eyvkyD0Bqm7sgaSUDumAdo4ycLNUaEg8VoNC2dkYbCSFhKqCwEGnFKjLW0XDEFNRUXO1zG2b2X13Thu7HG6s1STfQ2z0NqfVxs_nsPUi_28BXpd9t4NH42DVcD96b_73qF1wQUcQ</recordid><startdate>20101113</startdate><enddate>20101113</enddate><creator>Burstedde, Carsten</creator><creator>Ghattas, Omar</creator><creator>Gurnis, Michael</creator><creator>Isaac, Tobin</creator><creator>Stadler, Georg</creator><creator>Warburton, Tim</creator><creator>Wilcox, Lucas</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20101113</creationdate><title>Extreme-Scale AMR</title><author>Burstedde, Carsten ; Ghattas, Omar ; Gurnis, Michael ; Isaac, Tobin ; Stadler, Georg ; Warburton, Tim ; Wilcox, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-7a09d0a27a67e20bec69f41ce3371846f754501ac2c81861b9de3be2fb5eb2ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Geometry</topic><topic>Heuristic algorithms</topic><topic>Joining processes</topic><topic>Mathematics of computing</topic><topic>Mathematics of computing -- Mathematical analysis</topic><topic>Mathematics of computing -- Mathematical analysis -- Differential equations</topic><topic>Mathematics of computing -- Mathematical analysis -- Differential equations -- Partial differential equations</topic><topic>Octrees</topic><topic>Partitioning algorithms</topic><topic>Runtime</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Burstedde, Carsten</creatorcontrib><creatorcontrib>Ghattas, Omar</creatorcontrib><creatorcontrib>Gurnis, Michael</creatorcontrib><creatorcontrib>Isaac, Tobin</creatorcontrib><creatorcontrib>Stadler, Georg</creatorcontrib><creatorcontrib>Warburton, Tim</creatorcontrib><creatorcontrib>Wilcox, Lucas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burstedde, Carsten</au><au>Ghattas, Omar</au><au>Gurnis, Michael</au><au>Isaac, Tobin</au><au>Stadler, Georg</au><au>Warburton, Tim</au><au>Wilcox, Lucas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extreme-Scale AMR</atitle><btitle>2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis</btitle><stitle>SC</stitle><date>2010-11-13</date><risdate>2010</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2167-4329</issn><eissn>2167-4337</eissn><isbn>9781424475599</isbn><isbn>1424475597</isbn><isbn>9781424475575</isbn><isbn>1424475570</isbn><eisbn>1424475597</eisbn><eisbn>9781424475582</eisbn><eisbn>9781424475599</eisbn><eisbn>1424475589</eisbn><abstract>Many problems are characterized by dynamics occurring on a wide range of length and time scales. One approach to overcoming the tyranny of scales is adaptive mesh refinement/coarsening (AMR), which dynamically adapts the mesh to resolve features of interest. However, the benefits of AMR are difficult to achieve in practice, particularly on the petascale computers that are essential for difficult problems. Due to the complex dynamic data structures and frequent load balancing, scaling dynamic AMR to hundreds of thousands of cores has long been considered a challenge. Another difficulty is extending parallel AMR techniques to high-order-accurate, complex-geometry-respecting methods that are favored for many classes of problems. Here we present new parallel algorithms for parallel dynamic AMR on forest-ofoctrees geometries with arbitrary-order continuous and discontinuous finite/spectral element discretizations. The implementations of these algorithms exhibit excellent weak and strong scaling to over 224,000 Cray XT5 cores for multiscale geophysics problems.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/SC.2010.25</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2167-4329
ispartof 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, 2010, p.1-12
issn 2167-4329
2167-4337
language eng
recordid cdi_ieee_primary_5644907
source IEEE Xplore All Conference Series
subjects Geometry
Heuristic algorithms
Joining processes
Mathematics of computing
Mathematics of computing -- Mathematical analysis
Mathematics of computing -- Mathematical analysis -- Differential equations
Mathematics of computing -- Mathematical analysis -- Differential equations -- Partial differential equations
Octrees
Partitioning algorithms
Runtime
Scalability
title Extreme-Scale AMR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extreme-Scale%20AMR&rft.btitle=2010%20ACM/IEEE%20International%20Conference%20for%20High%20Performance%20Computing,%20Networking,%20Storage%20and%20Analysis&rft.au=Burstedde,%20Carsten&rft.date=2010-11-13&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2167-4329&rft.eissn=2167-4337&rft.isbn=9781424475599&rft.isbn_list=1424475597&rft.isbn_list=9781424475575&rft.isbn_list=1424475570&rft_id=info:doi/10.1109/SC.2010.25&rft.eisbn=1424475597&rft.eisbn_list=9781424475582&rft.eisbn_list=9781424475599&rft.eisbn_list=1424475589&rft_dat=%3Cacm_CHZPO%3Eacm_books_10_1109_SC_2010_25%3C/acm_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a193t-7a09d0a27a67e20bec69f41ce3371846f754501ac2c81861b9de3be2fb5eb2ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5644907&rfr_iscdi=true