Loading…
Gradient Profile Prior and Its Applications in Image Super-Resolution and Enhancement
In this paper, we propose a novel generic image prior-gradient profile prior, which implies the prior knowledge of natural image gradients. In this prior, the image gradients are represented by gradient profiles, which are 1-D profiles of gradient magnitudes perpendicular to image structures. We mod...
Saved in:
Published in: | IEEE transactions on image processing 2011-06, Vol.20 (6), p.1529-1542 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a novel generic image prior-gradient profile prior, which implies the prior knowledge of natural image gradients. In this prior, the image gradients are represented by gradient profiles, which are 1-D profiles of gradient magnitudes perpendicular to image structures. We model the gradient profiles by a parametric gradient profile model. Using this model, the prior knowledge of the gradient profiles are learned from a large collection of natural images, which are called gradient profile prior. Based on this prior, we propose a gradient field transformation to constrain the gradient fields of the high resolution image and the enhanced image when performing single image super-resolution and sharpness enhancement. With this simple but very effective approach, we are able to produce state-of-the-art results. The reconstructed high resolution images or the enhanced images are sharp while have rare ringing or jaggy artifacts. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2010.2095871 |