Loading…
Floor sensing system using laser range finder and mirror for localizing daily life commodities
This paper proposes a new method of measuring position of daily commodities placed on a floor. Picking up an object on a floor will be a typical task for a robot working in our daily life environment. However, it is difficult for a robotic vision to find a small daily life object left on a large flo...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a new method of measuring position of daily commodities placed on a floor. Picking up an object on a floor will be a typical task for a robot working in our daily life environment. However, it is difficult for a robotic vision to find a small daily life object left on a large floor. The floor surface may have various texture and shadow, while other furniture may obstruct the vision. Various objects may also exist on the floor. Moreover, the surface of the object has various optical characteristics: color, metallic reflection, transparent, black etc. Our method uses a laser range finder (LRF) together with a mirror installed on the wall very close to floor. The LRF scans the laser beam horizontally just above the floor and measure the distance to the object. Some beams are reflected by the mirror and measure the distance of the object from virtually different origin. Even if the LRF fails two measurements, the method calculates the position of the object by utilizing information that the two measurements are unavailable. Thus, the method achieves two major advantages: 1) robust against occlusion and 2) applicable to variety of daily life commodities. In the experiment, success rate of observation of our method achieves 100% for any daily commodity, while that of the existing method for a cell-phone is 69.4%. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2010.5649372 |