Loading…

Using the disparity space to compute occupancy grids from stereo-vision

The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically...

Full description

Saved in:
Bibliographic Details
Main Authors: Perrollaz, Mathias, Yoder, John-David, Spalanzani, Anne, Laugier, Christian
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2726
container_issue
container_start_page 2721
container_title
container_volume
creator Perrollaz, Mathias
Yoder, John-David
Spalanzani, Anne
Laugier, Christian
description The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others.
doi_str_mv 10.1109/IROS.2010.5649690
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5649690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5649690</ieee_id><sourcerecordid>5649690</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-cb98f1e681300b1fc89b8a50e8f28eb7eea583e29e5489e20d0712acb8a2c4643</originalsourceid><addsrcrecordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D5Jk3TN5cydA4GA3XXI03fzoj9oMmE_nsLG4JXh8NzeC4OY_cCFkKAeVy_bd8XEqaaa2W0gQuWmAKFkkppXWh1yWZS5FkKqPXVP6bg-o_leMuSEL4AJlVh0OgZW-2Cbw88fhKvfOjt4OPIp3TEY8dd1_THSLxz7tjb1o38MPgq8HroGh4iDdSlPz74rr1jN7X9DpScc852L88fy9d0s12tl0-b1EuBMXWlwVqQRpEBlKJ2aEq0ORDWEqksiGyOGUlDuUJDEioohLRuGkmntMrm7OHk9US07wff2GHcn2_JfgHNoVIn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using the disparity space to compute occupancy grids from stereo-vision</title><source>IEEE Xplore All Conference Series</source><creator>Perrollaz, Mathias ; Yoder, John-David ; Spalanzani, Anne ; Laugier, Christian</creator><creatorcontrib>Perrollaz, Mathias ; Yoder, John-David ; Spalanzani, Anne ; Laugier, Christian</creatorcontrib><description>The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5649690</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Copper ; Pixel ; Probability density function ; Roads ; Sensors ; Vehicles</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2721-2726</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5649690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5649690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perrollaz, Mathias</creatorcontrib><creatorcontrib>Yoder, John-David</creatorcontrib><creatorcontrib>Spalanzani, Anne</creatorcontrib><creatorcontrib>Laugier, Christian</creatorcontrib><title>Using the disparity space to compute occupancy grids from stereo-vision</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others.</description><subject>Cameras</subject><subject>Copper</subject><subject>Pixel</subject><subject>Probability density function</subject><subject>Roads</subject><subject>Sensors</subject><subject>Vehicles</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D5Jk3TN5cydA4GA3XXI03fzoj9oMmE_nsLG4JXh8NzeC4OY_cCFkKAeVy_bd8XEqaaa2W0gQuWmAKFkkppXWh1yWZS5FkKqPXVP6bg-o_leMuSEL4AJlVh0OgZW-2Cbw88fhKvfOjt4OPIp3TEY8dd1_THSLxz7tjb1o38MPgq8HroGh4iDdSlPz74rr1jN7X9DpScc852L88fy9d0s12tl0-b1EuBMXWlwVqQRpEBlKJ2aEq0ORDWEqksiGyOGUlDuUJDEioohLRuGkmntMrm7OHk9US07wff2GHcn2_JfgHNoVIn</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Perrollaz, Mathias</creator><creator>Yoder, John-David</creator><creator>Spalanzani, Anne</creator><creator>Laugier, Christian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Using the disparity space to compute occupancy grids from stereo-vision</title><author>Perrollaz, Mathias ; Yoder, John-David ; Spalanzani, Anne ; Laugier, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-cb98f1e681300b1fc89b8a50e8f28eb7eea583e29e5489e20d0712acb8a2c4643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Copper</topic><topic>Pixel</topic><topic>Probability density function</topic><topic>Roads</topic><topic>Sensors</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Perrollaz, Mathias</creatorcontrib><creatorcontrib>Yoder, John-David</creatorcontrib><creatorcontrib>Spalanzani, Anne</creatorcontrib><creatorcontrib>Laugier, Christian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perrollaz, Mathias</au><au>Yoder, John-David</au><au>Spalanzani, Anne</au><au>Laugier, Christian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using the disparity space to compute occupancy grids from stereo-vision</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>2721</spage><epage>2726</epage><pages>2721-2726</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5649690</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2721-2726
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5649690
source IEEE Xplore All Conference Series
subjects Cameras
Copper
Pixel
Probability density function
Roads
Sensors
Vehicles
title Using the disparity space to compute occupancy grids from stereo-vision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20the%20disparity%20space%20to%20compute%20occupancy%20grids%20from%20stereo-vision&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Perrollaz,%20Mathias&rft.date=2010-01-01&rft.spage=2721&rft.epage=2726&rft.pages=2721-2726&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5649690&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&rft_dat=%3Cieee_CHZPO%3E5649690%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-cb98f1e681300b1fc89b8a50e8f28eb7eea583e29e5489e20d0712acb8a2c4643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5649690&rfr_iscdi=true