Loading…
Using the disparity space to compute occupancy grids from stereo-vision
The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2726 |
container_issue | |
container_start_page | 2721 |
container_title | |
container_volume | |
creator | Perrollaz, Mathias Yoder, John-David Spalanzani, Anne Laugier, Christian |
description | The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others. |
doi_str_mv | 10.1109/IROS.2010.5649690 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5649690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5649690</ieee_id><sourcerecordid>5649690</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-cb98f1e681300b1fc89b8a50e8f28eb7eea583e29e5489e20d0712acb8a2c4643</originalsourceid><addsrcrecordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D5Jk3TN5cydA4GA3XXI03fzoj9oMmE_nsLG4JXh8NzeC4OY_cCFkKAeVy_bd8XEqaaa2W0gQuWmAKFkkppXWh1yWZS5FkKqPXVP6bg-o_leMuSEL4AJlVh0OgZW-2Cbw88fhKvfOjt4OPIp3TEY8dd1_THSLxz7tjb1o38MPgq8HroGh4iDdSlPz74rr1jN7X9DpScc852L88fy9d0s12tl0-b1EuBMXWlwVqQRpEBlKJ2aEq0ORDWEqksiGyOGUlDuUJDEioohLRuGkmntMrm7OHk9US07wff2GHcn2_JfgHNoVIn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using the disparity space to compute occupancy grids from stereo-vision</title><source>IEEE Xplore All Conference Series</source><creator>Perrollaz, Mathias ; Yoder, John-David ; Spalanzani, Anne ; Laugier, Christian</creator><creatorcontrib>Perrollaz, Mathias ; Yoder, John-David ; Spalanzani, Anne ; Laugier, Christian</creatorcontrib><description>The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5649690</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Copper ; Pixel ; Probability density function ; Roads ; Sensors ; Vehicles</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2721-2726</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5649690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5649690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perrollaz, Mathias</creatorcontrib><creatorcontrib>Yoder, John-David</creatorcontrib><creatorcontrib>Spalanzani, Anne</creatorcontrib><creatorcontrib>Laugier, Christian</creatorcontrib><title>Using the disparity space to compute occupancy grids from stereo-vision</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others.</description><subject>Cameras</subject><subject>Copper</subject><subject>Pixel</subject><subject>Probability density function</subject><subject>Roads</subject><subject>Sensors</subject><subject>Vehicles</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkF1LwzAYheMXOGZ_gHiTP9D5Jk3TN5cydA4GA3XXI03fzoj9oMmE_nsLG4JXh8NzeC4OY_cCFkKAeVy_bd8XEqaaa2W0gQuWmAKFkkppXWh1yWZS5FkKqPXVP6bg-o_leMuSEL4AJlVh0OgZW-2Cbw88fhKvfOjt4OPIp3TEY8dd1_THSLxz7tjb1o38MPgq8HroGh4iDdSlPz74rr1jN7X9DpScc852L88fy9d0s12tl0-b1EuBMXWlwVqQRpEBlKJ2aEq0ORDWEqksiGyOGUlDuUJDEioohLRuGkmntMrm7OHk9US07wff2GHcn2_JfgHNoVIn</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Perrollaz, Mathias</creator><creator>Yoder, John-David</creator><creator>Spalanzani, Anne</creator><creator>Laugier, Christian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Using the disparity space to compute occupancy grids from stereo-vision</title><author>Perrollaz, Mathias ; Yoder, John-David ; Spalanzani, Anne ; Laugier, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-cb98f1e681300b1fc89b8a50e8f28eb7eea583e29e5489e20d0712acb8a2c4643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Copper</topic><topic>Pixel</topic><topic>Probability density function</topic><topic>Roads</topic><topic>Sensors</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Perrollaz, Mathias</creatorcontrib><creatorcontrib>Yoder, John-David</creatorcontrib><creatorcontrib>Spalanzani, Anne</creatorcontrib><creatorcontrib>Laugier, Christian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perrollaz, Mathias</au><au>Yoder, John-David</au><au>Spalanzani, Anne</au><au>Laugier, Christian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using the disparity space to compute occupancy grids from stereo-vision</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>2721</spage><epage>2726</epage><pages>2721-2726</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>The occupancy grid is a popular tool for probabilistic robotics, used for a variety of applications. Such grids are typically based on data from range sensors (e.g. laser, ultrasound), and the computation process is well known. The use of stereo-vision in this framework is less common, and typically treats the stereo sensor as a distance sensor, or fails to account for the uncertainties specific to vision. In this paper, we propose a novel approach to compute occupancy grids from stereo-vision, for the purpose of intelligent vehicles. Occupancy is initially computed directly in the stereoscopic sensor's disparity space, using the sensor's pixel-wise precision during the computation process and allowing the handling of occlusions in the observed area. It is also computationally efficient, since it uses the u-disparity approach to avoid processing a large point cloud. In a second stage, this disparity-space occupancy is transformed into a Cartesian space occupancy grid to be used by subsequent applications. In this paper, we present the method and show results obtained with real road data, comparing this approach with others.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5649690</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2721-2726 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_5649690 |
source | IEEE Xplore All Conference Series |
subjects | Cameras Copper Pixel Probability density function Roads Sensors Vehicles |
title | Using the disparity space to compute occupancy grids from stereo-vision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20the%20disparity%20space%20to%20compute%20occupancy%20grids%20from%20stereo-vision&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Perrollaz,%20Mathias&rft.date=2010-01-01&rft.spage=2721&rft.epage=2726&rft.pages=2721-2726&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5649690&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&rft_dat=%3Cieee_CHZPO%3E5649690%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-cb98f1e681300b1fc89b8a50e8f28eb7eea583e29e5489e20d0712acb8a2c4643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5649690&rfr_iscdi=true |