Loading…

A probabilistic measurement model for local interest point based 6 DOF pose estimation

The ability to recognize objects and to localize them precisely is essential in all service robotic applications. One of the main challenges for service robots during operation lies in the handling of unavoidable uncertainties which originate from model and sensor inaccuracies and are characteristic...

Full description

Saved in:
Bibliographic Details
Main Authors: Grundmann, T, Eidenberger, R, v. Wichert, G
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4577
container_issue
container_start_page 4572
container_title
container_volume
creator Grundmann, T
Eidenberger, R
v. Wichert, G
description The ability to recognize objects and to localize them precisely is essential in all service robotic applications. One of the main challenges for service robots during operation lies in the handling of unavoidable uncertainties which originate from model and sensor inaccuracies and are characteristic for realistic application scenarios. Robustness under real world conditions can only be achieved when the dominant uncertainties are explicitly represented and purposefully managed by the robot's control system. We therefore adopt a probabilistic approach in which environment perception over time is regarded as a sequential estimation process and follow a Bayesian filtering methodology. Under these assumptions probabilistic models of the robot's perception systems play a decisive role. In this paper we describe our object localization system which is based on local features and uses 3D models that are created in an off-line modeling process. A probabilistic model of the errors, which occur in the 6D localization based on local features, is directly derived from the pose reconstruction procedure. Experimental results from an household scenario illustrate the effectiveness of our approach.
doi_str_mv 10.1109/IROS.2010.5649799
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5649799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5649799</ieee_id><sourcerecordid>5649799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9e4dc4b11cce811b02c8f7f1a8046ead0db0dfa259cb4bb8482fb50bdf870da13</originalsourceid><addsrcrecordid>eNpVkMtqwzAQRdUXNKT-gNKNfsDpyJb1WIa0aQMBQ1_boMcIVOzYSO6if19DQ6GruXMPnIEh5JbBijHQ97uX9nVVwbw2gmup9RkptFSMV5wLIQU_J4uKNXUJSoiLf4zD5R9r1DUpcv4EmFVSKy0W5GNNxzRYY2MX8xQd7dHkr4Q9HifaDx47GoZEu8GZjsbjhAnzRMdhjtSajJ4K-tBu5yYjnVHszRSH4w25CqbLWJzmkrxvH982z-W-fdpt1vsyMtlMpUbuHbeMOYeKMQuVU0EGZhRwgcaDt-CDqRrtLLdWcVUF24D1QUnwhtVLcvfrjYh4GNN8Pn0fTl-qfwBZSVf9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A probabilistic measurement model for local interest point based 6 DOF pose estimation</title><source>IEEE Xplore All Conference Series</source><creator>Grundmann, T ; Eidenberger, R ; v. Wichert, G</creator><creatorcontrib>Grundmann, T ; Eidenberger, R ; v. Wichert, G</creatorcontrib><description>The ability to recognize objects and to localize them precisely is essential in all service robotic applications. One of the main challenges for service robots during operation lies in the handling of unavoidable uncertainties which originate from model and sensor inaccuracies and are characteristic for realistic application scenarios. Robustness under real world conditions can only be achieved when the dominant uncertainties are explicitly represented and purposefully managed by the robot's control system. We therefore adopt a probabilistic approach in which environment perception over time is regarded as a sequential estimation process and follow a Bayesian filtering methodology. Under these assumptions probabilistic models of the robot's perception systems play a decisive role. In this paper we describe our object localization system which is based on local features and uses 3D models that are created in an off-line modeling process. A probabilistic model of the errors, which occur in the 6D localization based on local features, is directly derived from the pose reconstruction procedure. Experimental results from an household scenario illustrate the effectiveness of our approach.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5649799</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Computational modeling ; Estimation ; Robot sensing systems ; Solid modeling ; Three dimensional displays ; Uncertainty</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.4572-4577</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5649799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5649799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Grundmann, T</creatorcontrib><creatorcontrib>Eidenberger, R</creatorcontrib><creatorcontrib>v. Wichert, G</creatorcontrib><title>A probabilistic measurement model for local interest point based 6 DOF pose estimation</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>The ability to recognize objects and to localize them precisely is essential in all service robotic applications. One of the main challenges for service robots during operation lies in the handling of unavoidable uncertainties which originate from model and sensor inaccuracies and are characteristic for realistic application scenarios. Robustness under real world conditions can only be achieved when the dominant uncertainties are explicitly represented and purposefully managed by the robot's control system. We therefore adopt a probabilistic approach in which environment perception over time is regarded as a sequential estimation process and follow a Bayesian filtering methodology. Under these assumptions probabilistic models of the robot's perception systems play a decisive role. In this paper we describe our object localization system which is based on local features and uses 3D models that are created in an off-line modeling process. A probabilistic model of the errors, which occur in the 6D localization based on local features, is directly derived from the pose reconstruction procedure. Experimental results from an household scenario illustrate the effectiveness of our approach.</description><subject>Cameras</subject><subject>Computational modeling</subject><subject>Estimation</subject><subject>Robot sensing systems</subject><subject>Solid modeling</subject><subject>Three dimensional displays</subject><subject>Uncertainty</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtqwzAQRdUXNKT-gNKNfsDpyJb1WIa0aQMBQ1_boMcIVOzYSO6if19DQ6GruXMPnIEh5JbBijHQ97uX9nVVwbw2gmup9RkptFSMV5wLIQU_J4uKNXUJSoiLf4zD5R9r1DUpcv4EmFVSKy0W5GNNxzRYY2MX8xQd7dHkr4Q9HifaDx47GoZEu8GZjsbjhAnzRMdhjtSajJ4K-tBu5yYjnVHszRSH4w25CqbLWJzmkrxvH982z-W-fdpt1vsyMtlMpUbuHbeMOYeKMQuVU0EGZhRwgcaDt-CDqRrtLLdWcVUF24D1QUnwhtVLcvfrjYh4GNN8Pn0fTl-qfwBZSVf9</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Grundmann, T</creator><creator>Eidenberger, R</creator><creator>v. Wichert, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>A probabilistic measurement model for local interest point based 6 DOF pose estimation</title><author>Grundmann, T ; Eidenberger, R ; v. Wichert, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9e4dc4b11cce811b02c8f7f1a8046ead0db0dfa259cb4bb8482fb50bdf870da13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Computational modeling</topic><topic>Estimation</topic><topic>Robot sensing systems</topic><topic>Solid modeling</topic><topic>Three dimensional displays</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Grundmann, T</creatorcontrib><creatorcontrib>Eidenberger, R</creatorcontrib><creatorcontrib>v. Wichert, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grundmann, T</au><au>Eidenberger, R</au><au>v. Wichert, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A probabilistic measurement model for local interest point based 6 DOF pose estimation</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-10</date><risdate>2010</risdate><spage>4572</spage><epage>4577</epage><pages>4572-4577</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>The ability to recognize objects and to localize them precisely is essential in all service robotic applications. One of the main challenges for service robots during operation lies in the handling of unavoidable uncertainties which originate from model and sensor inaccuracies and are characteristic for realistic application scenarios. Robustness under real world conditions can only be achieved when the dominant uncertainties are explicitly represented and purposefully managed by the robot's control system. We therefore adopt a probabilistic approach in which environment perception over time is regarded as a sequential estimation process and follow a Bayesian filtering methodology. Under these assumptions probabilistic models of the robot's perception systems play a decisive role. In this paper we describe our object localization system which is based on local features and uses 3D models that are created in an off-line modeling process. A probabilistic model of the errors, which occur in the 6D localization based on local features, is directly derived from the pose reconstruction procedure. Experimental results from an household scenario illustrate the effectiveness of our approach.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5649799</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.4572-4577
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5649799
source IEEE Xplore All Conference Series
subjects Cameras
Computational modeling
Estimation
Robot sensing systems
Solid modeling
Three dimensional displays
Uncertainty
title A probabilistic measurement model for local interest point based 6 DOF pose estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20probabilistic%20measurement%20model%20for%20local%20interest%20point%20based%206%20DOF%20pose%20estimation&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Grundmann,%20T&rft.date=2010-10&rft.spage=4572&rft.epage=4577&rft.pages=4572-4577&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5649799&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&rft_dat=%3Cieee_CHZPO%3E5649799%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9e4dc4b11cce811b02c8f7f1a8046ead0db0dfa259cb4bb8482fb50bdf870da13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5649799&rfr_iscdi=true