Loading…

A spherical robot-centered representation for urban navigation

This paper describes a generic method for vision-based navigation in real urban environments. The proposed approach relies on a representation of the scene based on spherical images augmented with depth information and a spherical saliency map, both constructed in a learning phase. Saliency maps are...

Full description

Saved in:
Bibliographic Details
Main Authors: Meilland, M, Comport, A I, Rives, P
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5201
container_issue
container_start_page 5196
container_title
container_volume
creator Meilland, M
Comport, A I
Rives, P
description This paper describes a generic method for vision-based navigation in real urban environments. The proposed approach relies on a representation of the scene based on spherical images augmented with depth information and a spherical saliency map, both constructed in a learning phase. Saliency maps are built by analyzing useful information of points which best condition spherical projections constraints in the image. During navigation, an image-based registration technique combined with robust outlier rejection is used to precisely locate the vehicle. The main objective of this work is to improve computational time by better representing and selecting information from the reference sphere and current image without degrading matching. It will be shown that by using this pre-learned global spherical memory no error is accumulated along the trajectory and the vehicle can be precisely located without drift.
doi_str_mv 10.1109/IROS.2010.5650380
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5650380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5650380</ieee_id><sourcerecordid>5650380</sourcerecordid><originalsourceid>FETCH-LOGICAL-h209t-9504856b98f3fc42a7d131e6843956d644cfdc0db8c74458697ee158052a73403</originalsourceid><addsrcrecordid>eNpVkMtqwzAURNUXNKT-gNKNfsDplXV1JW0KIfQRCAT6WAdZvm5cUjvIbqF_X9OGQlfDzBlmMUJcKpgpBf56-bh-mhUwWkMGtIMjkXnrFBaIRJbwWEwKZXQOjujkH0M4_WPGnYus798AxinrnaeJuJnLfr_l1MSwk6kruyGP3A6cuJKJ94n70YWh6VpZd0l-pDK0sg2fzetPeCHO6rDrOTvoVLzc3T4vHvLV-n65mK_ybQF-yL0BdIZK72pdRyyCrZRWTA61N1QRYqyrCFXpokU0jrxlVsaBGasaQU_F1e9uw8ybfWreQ_raHN7Q3zGzTZA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A spherical robot-centered representation for urban navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meilland, M ; Comport, A I ; Rives, P</creator><creatorcontrib>Meilland, M ; Comport, A I ; Rives, P</creatorcontrib><description>This paper describes a generic method for vision-based navigation in real urban environments. The proposed approach relies on a representation of the scene based on spherical images augmented with depth information and a spherical saliency map, both constructed in a learning phase. Saliency maps are built by analyzing useful information of points which best condition spherical projections constraints in the image. During navigation, an image-based registration technique combined with robust outlier rejection is used to precisely locate the vehicle. The main objective of this work is to improve computational time by better representing and selecting information from the reference sphere and current image without degrading matching. It will be shown that by using this pre-learned global spherical memory no error is accumulated along the trajectory and the vehicle can be precisely located without drift.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5650380</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Estimation ; Navigation ; Pixel ; Robustness ; Trajectory ; Vehicles</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.5196-5201</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5650380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5650380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meilland, M</creatorcontrib><creatorcontrib>Comport, A I</creatorcontrib><creatorcontrib>Rives, P</creatorcontrib><title>A spherical robot-centered representation for urban navigation</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper describes a generic method for vision-based navigation in real urban environments. The proposed approach relies on a representation of the scene based on spherical images augmented with depth information and a spherical saliency map, both constructed in a learning phase. Saliency maps are built by analyzing useful information of points which best condition spherical projections constraints in the image. During navigation, an image-based registration technique combined with robust outlier rejection is used to precisely locate the vehicle. The main objective of this work is to improve computational time by better representing and selecting information from the reference sphere and current image without degrading matching. It will be shown that by using this pre-learned global spherical memory no error is accumulated along the trajectory and the vehicle can be precisely located without drift.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Navigation</subject><subject>Pixel</subject><subject>Robustness</subject><subject>Trajectory</subject><subject>Vehicles</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtqwzAURNUXNKT-gNKNfsDplXV1JW0KIfQRCAT6WAdZvm5cUjvIbqF_X9OGQlfDzBlmMUJcKpgpBf56-bh-mhUwWkMGtIMjkXnrFBaIRJbwWEwKZXQOjujkH0M4_WPGnYus798AxinrnaeJuJnLfr_l1MSwk6kruyGP3A6cuJKJ94n70YWh6VpZd0l-pDK0sg2fzetPeCHO6rDrOTvoVLzc3T4vHvLV-n65mK_ybQF-yL0BdIZK72pdRyyCrZRWTA61N1QRYqyrCFXpokU0jrxlVsaBGasaQU_F1e9uw8ybfWreQ_raHN7Q3zGzTZA</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Meilland, M</creator><creator>Comport, A I</creator><creator>Rives, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>A spherical robot-centered representation for urban navigation</title><author>Meilland, M ; Comport, A I ; Rives, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h209t-9504856b98f3fc42a7d131e6843956d644cfdc0db8c74458697ee158052a73403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Navigation</topic><topic>Pixel</topic><topic>Robustness</topic><topic>Trajectory</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Meilland, M</creatorcontrib><creatorcontrib>Comport, A I</creatorcontrib><creatorcontrib>Rives, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meilland, M</au><au>Comport, A I</au><au>Rives, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A spherical robot-centered representation for urban navigation</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-10</date><risdate>2010</risdate><spage>5196</spage><epage>5201</epage><pages>5196-5201</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>This paper describes a generic method for vision-based navigation in real urban environments. The proposed approach relies on a representation of the scene based on spherical images augmented with depth information and a spherical saliency map, both constructed in a learning phase. Saliency maps are built by analyzing useful information of points which best condition spherical projections constraints in the image. During navigation, an image-based registration technique combined with robust outlier rejection is used to precisely locate the vehicle. The main objective of this work is to improve computational time by better representing and selecting information from the reference sphere and current image without degrading matching. It will be shown that by using this pre-learned global spherical memory no error is accumulated along the trajectory and the vehicle can be precisely located without drift.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5650380</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.5196-5201
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5650380
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Estimation
Navigation
Pixel
Robustness
Trajectory
Vehicles
title A spherical robot-centered representation for urban navigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20spherical%20robot-centered%20representation%20for%20urban%20navigation&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Meilland,%20M&rft.date=2010-10&rft.spage=5196&rft.epage=5201&rft.pages=5196-5201&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5650380&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&rft_dat=%3Cieee_6IE%3E5650380%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h209t-9504856b98f3fc42a7d131e6843956d644cfdc0db8c74458697ee158052a73403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5650380&rfr_iscdi=true