Loading…

Saliency detection using maximum symmetric surround

Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining sub...

Full description

Saved in:
Bibliographic Details
Main Authors: Achanta, R, Süsstrunk, Sabine
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763
cites
container_end_page 2656
container_issue
container_start_page 2653
container_title
container_volume
creator Achanta, R
Süsstrunk, Sabine
description Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts.
doi_str_mv 10.1109/ICIP.2010.5652636
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5652636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5652636</ieee_id><sourcerecordid>5652636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763</originalsourceid><addsrcrecordid>eNpVj8tKxEAURNsXGMf5AHGTH8jYfW8_lxJ8BAYU1PXQpG-kZToj6QTM3xtwNq6qDgUHirEbwTdCcHfX1M3rBviCSivQqE_Y2hkrJEhpnJP2lBWAVlRWSXf2bwN5zgqhACppLb9kVzl_cb64UBQM3_w-Ut_OZaCR2jEe-nLKsf8sk_-JaUplnlOicYhtmadhOEx9uGYXnd9nWh9zxT4eH97r52r78tTU99uqBa3HKnhFaDovrELUGJRHIZxGbqlbuGuFBecd10jGEoQgEQ0AYAe4NI0rdvvnjUS0-x5i8sO8O_7HX8n_SM8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Saliency detection using maximum symmetric surround</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Achanta, R ; Süsstrunk, Sabine</creator><creatorcontrib>Achanta, R ; Süsstrunk, Sabine</creatorcontrib><description>Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5652636</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Computer vision ; Conferences ; content-aware image re-targeting ; Image color analysis ; Image saliency ; Image segmentation ; Pixel ; seam carving ; segmentation ; Visualization</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.2653-2656</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5652636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5652636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Achanta, R</creatorcontrib><creatorcontrib>Süsstrunk, Sabine</creatorcontrib><title>Saliency detection using maximum symmetric surround</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts.</description><subject>Biology</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>content-aware image re-targeting</subject><subject>Image color analysis</subject><subject>Image saliency</subject><subject>Image segmentation</subject><subject>Pixel</subject><subject>seam carving</subject><subject>segmentation</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj8tKxEAURNsXGMf5AHGTH8jYfW8_lxJ8BAYU1PXQpG-kZToj6QTM3xtwNq6qDgUHirEbwTdCcHfX1M3rBviCSivQqE_Y2hkrJEhpnJP2lBWAVlRWSXf2bwN5zgqhACppLb9kVzl_cb64UBQM3_w-Ut_OZaCR2jEe-nLKsf8sk_-JaUplnlOicYhtmadhOEx9uGYXnd9nWh9zxT4eH97r52r78tTU99uqBa3HKnhFaDovrELUGJRHIZxGbqlbuGuFBecd10jGEoQgEQ0AYAe4NI0rdvvnjUS0-x5i8sO8O_7HX8n_SM8</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Achanta, R</creator><creator>Süsstrunk, Sabine</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Saliency detection using maximum symmetric surround</title><author>Achanta, R ; Süsstrunk, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biology</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>content-aware image re-targeting</topic><topic>Image color analysis</topic><topic>Image saliency</topic><topic>Image segmentation</topic><topic>Pixel</topic><topic>seam carving</topic><topic>segmentation</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Achanta, R</creatorcontrib><creatorcontrib>Süsstrunk, Sabine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Achanta, R</au><au>Süsstrunk, Sabine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Saliency detection using maximum symmetric surround</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>2653</spage><epage>2656</epage><pages>2653-2656</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5652636</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.2653-2656
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5652636
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biology
Computer vision
Conferences
content-aware image re-targeting
Image color analysis
Image saliency
Image segmentation
Pixel
seam carving
segmentation
Visualization
title Saliency detection using maximum symmetric surround
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Saliency%20detection%20using%20maximum%20symmetric%20surround&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Achanta,%20R&rft.date=2010-01-01&rft.spage=2653&rft.epage=2656&rft.pages=2653-2656&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5652636&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&rft_dat=%3Cieee_6IE%3E5652636%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5652636&rfr_iscdi=true