Loading…
Saliency detection using maximum symmetric surround
Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining sub...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763 |
---|---|
cites | |
container_end_page | 2656 |
container_issue | |
container_start_page | 2653 |
container_title | |
container_volume | |
creator | Achanta, R Süsstrunk, Sabine |
description | Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts. |
doi_str_mv | 10.1109/ICIP.2010.5652636 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5652636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5652636</ieee_id><sourcerecordid>5652636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763</originalsourceid><addsrcrecordid>eNpVj8tKxEAURNsXGMf5AHGTH8jYfW8_lxJ8BAYU1PXQpG-kZToj6QTM3xtwNq6qDgUHirEbwTdCcHfX1M3rBviCSivQqE_Y2hkrJEhpnJP2lBWAVlRWSXf2bwN5zgqhACppLb9kVzl_cb64UBQM3_w-Ut_OZaCR2jEe-nLKsf8sk_-JaUplnlOicYhtmadhOEx9uGYXnd9nWh9zxT4eH97r52r78tTU99uqBa3HKnhFaDovrELUGJRHIZxGbqlbuGuFBecd10jGEoQgEQ0AYAe4NI0rdvvnjUS0-x5i8sO8O_7HX8n_SM8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Saliency detection using maximum symmetric surround</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Achanta, R ; Süsstrunk, Sabine</creator><creatorcontrib>Achanta, R ; Süsstrunk, Sabine</creatorcontrib><description>Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5652636</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Computer vision ; Conferences ; content-aware image re-targeting ; Image color analysis ; Image saliency ; Image segmentation ; Pixel ; seam carving ; segmentation ; Visualization</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.2653-2656</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5652636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5652636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Achanta, R</creatorcontrib><creatorcontrib>Süsstrunk, Sabine</creatorcontrib><title>Saliency detection using maximum symmetric surround</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts.</description><subject>Biology</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>content-aware image re-targeting</subject><subject>Image color analysis</subject><subject>Image saliency</subject><subject>Image segmentation</subject><subject>Pixel</subject><subject>seam carving</subject><subject>segmentation</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj8tKxEAURNsXGMf5AHGTH8jYfW8_lxJ8BAYU1PXQpG-kZToj6QTM3xtwNq6qDgUHirEbwTdCcHfX1M3rBviCSivQqE_Y2hkrJEhpnJP2lBWAVlRWSXf2bwN5zgqhACppLb9kVzl_cb64UBQM3_w-Ut_OZaCR2jEe-nLKsf8sk_-JaUplnlOicYhtmadhOEx9uGYXnd9nWh9zxT4eH97r52r78tTU99uqBa3HKnhFaDovrELUGJRHIZxGbqlbuGuFBecd10jGEoQgEQ0AYAe4NI0rdvvnjUS0-x5i8sO8O_7HX8n_SM8</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Achanta, R</creator><creator>Süsstrunk, Sabine</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Saliency detection using maximum symmetric surround</title><author>Achanta, R ; Süsstrunk, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biology</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>content-aware image re-targeting</topic><topic>Image color analysis</topic><topic>Image saliency</topic><topic>Image segmentation</topic><topic>Pixel</topic><topic>seam carving</topic><topic>segmentation</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Achanta, R</creatorcontrib><creatorcontrib>Süsstrunk, Sabine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Achanta, R</au><au>Süsstrunk, Sabine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Saliency detection using maximum symmetric surround</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>2653</spage><epage>2656</epage><pages>2653-2656</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. Recently, full-resolution salient maps that retain well-defined boundaries have attracted attention. In these maps, boundaries are preserved by retaining substantially more frequency content from the original image than older techniques. However, if the salient regions comprise more than half the pixels of the image, or if the background is complex, the background gets highlighted instead of the salient object. In this paper, we introduce a method for salient region detection that retains the advantages of such saliency maps while overcoming their shortcomings. Our method exploits features of color and luminance, is simple to implement and is computationally efficient. We compare our algorithm to six state-of-the-art salient region detection methods using publicly available ground truth. Our method outperforms the six algorithms by achieving both higher precision and better recall. We also show application of our saliency maps in an automatic salient object segmentation scheme using graph-cuts.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5652636</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2010 IEEE International Conference on Image Processing, 2010, p.2653-2656 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5652636 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biology Computer vision Conferences content-aware image re-targeting Image color analysis Image saliency Image segmentation Pixel seam carving segmentation Visualization |
title | Saliency detection using maximum symmetric surround |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Saliency%20detection%20using%20maximum%20symmetric%20surround&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Achanta,%20R&rft.date=2010-01-01&rft.spage=2653&rft.epage=2656&rft.pages=2653-2656&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5652636&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&rft_dat=%3Cieee_6IE%3E5652636%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-da5e37fa1853363d5a31196308ef363fc1829a9063e78e2dd43372223f2333763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5652636&rfr_iscdi=true |