Loading…

Mean shift track initiation algorithm based on Hough transform

To solve the problem of initiating tracks for multi-target in dense clutters environment, a Mean shift track initiation algorithm based on Hough transform is proposed. In the algorithm, firstly, hough transform is applied to transform observation points from input space, referred to as feature space...

Full description

Saved in:
Bibliographic Details
Main Authors: Lijun Zhou, Weixin Xie, Liangqun Li
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1266
container_issue
container_start_page 1263
container_title
container_volume
creator Lijun Zhou
Weixin Xie
Liangqun Li
description To solve the problem of initiating tracks for multi-target in dense clutters environment, a Mean shift track initiation algorithm based on Hough transform is proposed. In the algorithm, firstly, hough transform is applied to transform observation points from input space, referred to as feature space into curves in a special parameter space; then a Mean shift clustering algorithm is executed to cluster the items gained in the parameter space, and the problem of peak seeking is also solved adaptively. Furthermore, a fuzzy influential factor, which is based on the vote number of accumulation matrix and distance between items in the parameter space and clustering center, is defined to design kernel function of Mean shift; thus clutters are removed more effectively. Experimental results show that proposed algorithm has high detection accuracy and can initiate tracks effectively.
doi_str_mv 10.1109/ICOSP.2010.5657191
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5657191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5657191</ieee_id><sourcerecordid>5657191</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e90f8ce08fdbd0b347e171a032c77003e646aab84d96ce5d0f8253df4118263</originalsourceid><addsrcrecordid>eNpVj81KAzEcxCNWsLT7AnrJC2zNP9-5CLKoLVQq1HvJbpJutLsrm3jw7V2xF-cyzPBjYBC6AbICIOZuU-32rytKpiykUGDgAhVGaeCUc6GN0Zf_suIzNKcgeSkohWtUpPROJgmqqJFzdP_ibY9TG0PGebTNB459zNHmOPTYno7DGHPb4dom7_BUrYevY_tL9ikMY7dEV8Geki_OvkD7p8e3al1ud8-b6mFbRlAil96QoBtPdHC1IzXjyoMCSxhtlCKEecmltbXmzsjGCzfRVDAXOICmki3Q7d9q9N4fPsfY2fH7cP7PfgDD3kv6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mean shift track initiation algorithm based on Hough transform</title><source>IEEE Xplore All Conference Series</source><creator>Lijun Zhou ; Weixin Xie ; Liangqun Li</creator><creatorcontrib>Lijun Zhou ; Weixin Xie ; Liangqun Li</creatorcontrib><description>To solve the problem of initiating tracks for multi-target in dense clutters environment, a Mean shift track initiation algorithm based on Hough transform is proposed. In the algorithm, firstly, hough transform is applied to transform observation points from input space, referred to as feature space into curves in a special parameter space; then a Mean shift clustering algorithm is executed to cluster the items gained in the parameter space, and the problem of peak seeking is also solved adaptively. Furthermore, a fuzzy influential factor, which is based on the vote number of accumulation matrix and distance between items in the parameter space and clustering center, is defined to design kernel function of Mean shift; thus clutters are removed more effectively. Experimental results show that proposed algorithm has high detection accuracy and can initiate tracks effectively.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 9781424458974</identifier><identifier>ISBN: 1424458978</identifier><identifier>EISBN: 9781424458998</identifier><identifier>EISBN: 9781424459001</identifier><identifier>EISBN: 1424459001</identifier><identifier>EISBN: 1424458994</identifier><identifier>DOI: 10.1109/ICOSP.2010.5657191</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Clutter ; Hough transform ; Kernel ; Mean Shift Clustering ; Signal processing algorithms ; Target tracking ; Track initiation ; Transforms</subject><ispartof>IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, 2010, p.1263-1266</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5657191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5657191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lijun Zhou</creatorcontrib><creatorcontrib>Weixin Xie</creatorcontrib><creatorcontrib>Liangqun Li</creatorcontrib><title>Mean shift track initiation algorithm based on Hough transform</title><title>IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS</title><addtitle>ICOSP</addtitle><description>To solve the problem of initiating tracks for multi-target in dense clutters environment, a Mean shift track initiation algorithm based on Hough transform is proposed. In the algorithm, firstly, hough transform is applied to transform observation points from input space, referred to as feature space into curves in a special parameter space; then a Mean shift clustering algorithm is executed to cluster the items gained in the parameter space, and the problem of peak seeking is also solved adaptively. Furthermore, a fuzzy influential factor, which is based on the vote number of accumulation matrix and distance between items in the parameter space and clustering center, is defined to design kernel function of Mean shift; thus clutters are removed more effectively. Experimental results show that proposed algorithm has high detection accuracy and can initiate tracks effectively.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Clutter</subject><subject>Hough transform</subject><subject>Kernel</subject><subject>Mean Shift Clustering</subject><subject>Signal processing algorithms</subject><subject>Target tracking</subject><subject>Track initiation</subject><subject>Transforms</subject><issn>2164-5221</issn><isbn>9781424458974</isbn><isbn>1424458978</isbn><isbn>9781424458998</isbn><isbn>9781424459001</isbn><isbn>1424459001</isbn><isbn>1424458994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj81KAzEcxCNWsLT7AnrJC2zNP9-5CLKoLVQq1HvJbpJutLsrm3jw7V2xF-cyzPBjYBC6AbICIOZuU-32rytKpiykUGDgAhVGaeCUc6GN0Zf_suIzNKcgeSkohWtUpPROJgmqqJFzdP_ibY9TG0PGebTNB459zNHmOPTYno7DGHPb4dom7_BUrYevY_tL9ikMY7dEV8Geki_OvkD7p8e3al1ud8-b6mFbRlAil96QoBtPdHC1IzXjyoMCSxhtlCKEecmltbXmzsjGCzfRVDAXOICmki3Q7d9q9N4fPsfY2fH7cP7PfgDD3kv6</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Lijun Zhou</creator><creator>Weixin Xie</creator><creator>Liangqun Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Mean shift track initiation algorithm based on Hough transform</title><author>Lijun Zhou ; Weixin Xie ; Liangqun Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e90f8ce08fdbd0b347e171a032c77003e646aab84d96ce5d0f8253df4118263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Clutter</topic><topic>Hough transform</topic><topic>Kernel</topic><topic>Mean Shift Clustering</topic><topic>Signal processing algorithms</topic><topic>Target tracking</topic><topic>Track initiation</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Lijun Zhou</creatorcontrib><creatorcontrib>Weixin Xie</creatorcontrib><creatorcontrib>Liangqun Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lijun Zhou</au><au>Weixin Xie</au><au>Liangqun Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mean shift track initiation algorithm based on Hough transform</atitle><btitle>IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS</btitle><stitle>ICOSP</stitle><date>2010-10</date><risdate>2010</risdate><spage>1263</spage><epage>1266</epage><pages>1263-1266</pages><issn>2164-5221</issn><isbn>9781424458974</isbn><isbn>1424458978</isbn><eisbn>9781424458998</eisbn><eisbn>9781424459001</eisbn><eisbn>1424459001</eisbn><eisbn>1424458994</eisbn><abstract>To solve the problem of initiating tracks for multi-target in dense clutters environment, a Mean shift track initiation algorithm based on Hough transform is proposed. In the algorithm, firstly, hough transform is applied to transform observation points from input space, referred to as feature space into curves in a special parameter space; then a Mean shift clustering algorithm is executed to cluster the items gained in the parameter space, and the problem of peak seeking is also solved adaptively. Furthermore, a fuzzy influential factor, which is based on the vote number of accumulation matrix and distance between items in the parameter space and clustering center, is defined to design kernel function of Mean shift; thus clutters are removed more effectively. Experimental results show that proposed algorithm has high detection accuracy and can initiate tracks effectively.</abstract><pub>IEEE</pub><doi>10.1109/ICOSP.2010.5657191</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, 2010, p.1263-1266
issn 2164-5221
language eng
recordid cdi_ieee_primary_5657191
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Clustering algorithms
Clutter
Hough transform
Kernel
Mean Shift Clustering
Signal processing algorithms
Target tracking
Track initiation
Transforms
title Mean shift track initiation algorithm based on Hough transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mean%20shift%20track%20initiation%20algorithm%20based%20on%20Hough%20transform&rft.btitle=IEEE%2010th%20INTERNATIONAL%20CONFERENCE%20ON%20SIGNAL%20PROCESSING%20PROCEEDINGS&rft.au=Lijun%20Zhou&rft.date=2010-10&rft.spage=1263&rft.epage=1266&rft.pages=1263-1266&rft.issn=2164-5221&rft.isbn=9781424458974&rft.isbn_list=1424458978&rft_id=info:doi/10.1109/ICOSP.2010.5657191&rft.eisbn=9781424458998&rft.eisbn_list=9781424459001&rft.eisbn_list=1424459001&rft.eisbn_list=1424458994&rft_dat=%3Cieee_CHZPO%3E5657191%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e90f8ce08fdbd0b347e171a032c77003e646aab84d96ce5d0f8253df4118263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5657191&rfr_iscdi=true