Loading…
Finding symmetric association rules to support medical qualitative research
In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 86 |
container_issue | |
container_start_page | 81 |
container_title | |
container_volume | |
creator | Paul, R Hoque, A S Md L |
description | In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -> Q or Q->P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset. |
doi_str_mv | 10.1109/ICDIM.2010.5664639 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5664639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5664639</ieee_id><sourcerecordid>5664639</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1720bf17cb2a2e0e2b8a4b8a3ffd86ea9625557efd196cdfe837cf0fb02f5a883</originalsourceid><addsrcrecordid>eNo1j9tKxDAYhCMiqGtfQG_yArvm0JwupbpaXPFm75c0_aORnkxSYd_eguvAMHwwDAxCt5RsKCXmvq4e67cNIwsLKUvJzRm6piUrSyUUleeoMEr_M9OXqEjpiywSTHHDr9DrNgxtGD5wOvY95BgctimNLtgcxgHHuYOE84jTPE1jzLiHNjjb4e_ZdiEvpR_AERLY6D5v0IW3XYLilCu03z7tq5f17v25rh5262BIXlPFSOOpcg2zDAiwRttyMfe-1RKskUwIocC31EjXetBcOU98Q5gXVmu-Qnd_swEADlMMvY3Hw-k-_wWOw1CP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Finding symmetric association rules to support medical qualitative research</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Paul, R ; Hoque, A S Md L</creator><creatorcontrib>Paul, R ; Hoque, A S Md L</creatorcontrib><description>In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -> Q or Q->P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset.</description><identifier>ISBN: 9781424475728</identifier><identifier>ISBN: 1424475724</identifier><identifier>EISBN: 1424475716</identifier><identifier>EISBN: 9781424475735</identifier><identifier>EISBN: 9781424475711</identifier><identifier>EISBN: 1424475732</identifier><identifier>DOI: 10.1109/ICDIM.2010.5664639</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Association rules ; Correlation ; Dictionaries ; Itemsets ; Medical diagnostic imaging ; Size measurement</subject><ispartof>2010 Fifth International Conference on Digital Information Management (ICDIM), 2010, p.81-86</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5664639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5664639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paul, R</creatorcontrib><creatorcontrib>Hoque, A S Md L</creatorcontrib><title>Finding symmetric association rules to support medical qualitative research</title><title>2010 Fifth International Conference on Digital Information Management (ICDIM)</title><addtitle>ICDIM</addtitle><description>In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -> Q or Q->P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset.</description><subject>Accuracy</subject><subject>Association rules</subject><subject>Correlation</subject><subject>Dictionaries</subject><subject>Itemsets</subject><subject>Medical diagnostic imaging</subject><subject>Size measurement</subject><isbn>9781424475728</isbn><isbn>1424475724</isbn><isbn>1424475716</isbn><isbn>9781424475735</isbn><isbn>9781424475711</isbn><isbn>1424475732</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9tKxDAYhCMiqGtfQG_yArvm0JwupbpaXPFm75c0_aORnkxSYd_eguvAMHwwDAxCt5RsKCXmvq4e67cNIwsLKUvJzRm6piUrSyUUleeoMEr_M9OXqEjpiywSTHHDr9DrNgxtGD5wOvY95BgctimNLtgcxgHHuYOE84jTPE1jzLiHNjjb4e_ZdiEvpR_AERLY6D5v0IW3XYLilCu03z7tq5f17v25rh5262BIXlPFSOOpcg2zDAiwRttyMfe-1RKskUwIocC31EjXetBcOU98Q5gXVmu-Qnd_swEADlMMvY3Hw-k-_wWOw1CP</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Paul, R</creator><creator>Hoque, A S Md L</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Finding symmetric association rules to support medical qualitative research</title><author>Paul, R ; Hoque, A S Md L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1720bf17cb2a2e0e2b8a4b8a3ffd86ea9625557efd196cdfe837cf0fb02f5a883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Association rules</topic><topic>Correlation</topic><topic>Dictionaries</topic><topic>Itemsets</topic><topic>Medical diagnostic imaging</topic><topic>Size measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Paul, R</creatorcontrib><creatorcontrib>Hoque, A S Md L</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paul, R</au><au>Hoque, A S Md L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding symmetric association rules to support medical qualitative research</atitle><btitle>2010 Fifth International Conference on Digital Information Management (ICDIM)</btitle><stitle>ICDIM</stitle><date>2010-07</date><risdate>2010</risdate><spage>81</spage><epage>86</epage><pages>81-86</pages><isbn>9781424475728</isbn><isbn>1424475724</isbn><eisbn>1424475716</eisbn><eisbn>9781424475735</eisbn><eisbn>9781424475711</eisbn><eisbn>1424475732</eisbn><abstract>In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -> Q or Q->P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICDIM.2010.5664639</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424475728 |
ispartof | 2010 Fifth International Conference on Digital Information Management (ICDIM), 2010, p.81-86 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5664639 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Association rules Correlation Dictionaries Itemsets Medical diagnostic imaging Size measurement |
title | Finding symmetric association rules to support medical qualitative research |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20symmetric%20association%20rules%20to%20support%20medical%20qualitative%20research&rft.btitle=2010%20Fifth%20International%20Conference%20on%20Digital%20Information%20Management%20(ICDIM)&rft.au=Paul,%20R&rft.date=2010-07&rft.spage=81&rft.epage=86&rft.pages=81-86&rft.isbn=9781424475728&rft.isbn_list=1424475724&rft_id=info:doi/10.1109/ICDIM.2010.5664639&rft.eisbn=1424475716&rft.eisbn_list=9781424475735&rft.eisbn_list=9781424475711&rft.eisbn_list=1424475732&rft_dat=%3Cieee_6IE%3E5664639%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-1720bf17cb2a2e0e2b8a4b8a3ffd86ea9625557efd196cdfe837cf0fb02f5a883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5664639&rfr_iscdi=true |