Loading…

Finding symmetric association rules to support medical qualitative research

In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Paul, R, Hoque, A S Md L
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 86
container_issue
container_start_page 81
container_title
container_volume
creator Paul, R
Hoque, A S Md L
description In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -> Q or Q->P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset.
doi_str_mv 10.1109/ICDIM.2010.5664639
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5664639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5664639</ieee_id><sourcerecordid>5664639</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1720bf17cb2a2e0e2b8a4b8a3ffd86ea9625557efd196cdfe837cf0fb02f5a883</originalsourceid><addsrcrecordid>eNo1j9tKxDAYhCMiqGtfQG_yArvm0JwupbpaXPFm75c0_aORnkxSYd_eguvAMHwwDAxCt5RsKCXmvq4e67cNIwsLKUvJzRm6piUrSyUUleeoMEr_M9OXqEjpiywSTHHDr9DrNgxtGD5wOvY95BgctimNLtgcxgHHuYOE84jTPE1jzLiHNjjb4e_ZdiEvpR_AERLY6D5v0IW3XYLilCu03z7tq5f17v25rh5262BIXlPFSOOpcg2zDAiwRttyMfe-1RKskUwIocC31EjXetBcOU98Q5gXVmu-Qnd_swEADlMMvY3Hw-k-_wWOw1CP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Finding symmetric association rules to support medical qualitative research</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Paul, R ; Hoque, A S Md L</creator><creatorcontrib>Paul, R ; Hoque, A S Md L</creatorcontrib><description>In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -&gt; Q or Q-&gt;P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset.</description><identifier>ISBN: 9781424475728</identifier><identifier>ISBN: 1424475724</identifier><identifier>EISBN: 1424475716</identifier><identifier>EISBN: 9781424475735</identifier><identifier>EISBN: 9781424475711</identifier><identifier>EISBN: 1424475732</identifier><identifier>DOI: 10.1109/ICDIM.2010.5664639</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Association rules ; Correlation ; Dictionaries ; Itemsets ; Medical diagnostic imaging ; Size measurement</subject><ispartof>2010 Fifth International Conference on Digital Information Management (ICDIM), 2010, p.81-86</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5664639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5664639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paul, R</creatorcontrib><creatorcontrib>Hoque, A S Md L</creatorcontrib><title>Finding symmetric association rules to support medical qualitative research</title><title>2010 Fifth International Conference on Digital Information Management (ICDIM)</title><addtitle>ICDIM</addtitle><description>In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -&gt; Q or Q-&gt;P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset.</description><subject>Accuracy</subject><subject>Association rules</subject><subject>Correlation</subject><subject>Dictionaries</subject><subject>Itemsets</subject><subject>Medical diagnostic imaging</subject><subject>Size measurement</subject><isbn>9781424475728</isbn><isbn>1424475724</isbn><isbn>1424475716</isbn><isbn>9781424475735</isbn><isbn>9781424475711</isbn><isbn>1424475732</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9tKxDAYhCMiqGtfQG_yArvm0JwupbpaXPFm75c0_aORnkxSYd_eguvAMHwwDAxCt5RsKCXmvq4e67cNIwsLKUvJzRm6piUrSyUUleeoMEr_M9OXqEjpiywSTHHDr9DrNgxtGD5wOvY95BgctimNLtgcxgHHuYOE84jTPE1jzLiHNjjb4e_ZdiEvpR_AERLY6D5v0IW3XYLilCu03z7tq5f17v25rh5262BIXlPFSOOpcg2zDAiwRttyMfe-1RKskUwIocC31EjXetBcOU98Q5gXVmu-Qnd_swEADlMMvY3Hw-k-_wWOw1CP</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Paul, R</creator><creator>Hoque, A S Md L</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Finding symmetric association rules to support medical qualitative research</title><author>Paul, R ; Hoque, A S Md L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1720bf17cb2a2e0e2b8a4b8a3ffd86ea9625557efd196cdfe837cf0fb02f5a883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Association rules</topic><topic>Correlation</topic><topic>Dictionaries</topic><topic>Itemsets</topic><topic>Medical diagnostic imaging</topic><topic>Size measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Paul, R</creatorcontrib><creatorcontrib>Hoque, A S Md L</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paul, R</au><au>Hoque, A S Md L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding symmetric association rules to support medical qualitative research</atitle><btitle>2010 Fifth International Conference on Digital Information Management (ICDIM)</btitle><stitle>ICDIM</stitle><date>2010-07</date><risdate>2010</risdate><spage>81</spage><epage>86</epage><pages>81-86</pages><isbn>9781424475728</isbn><isbn>1424475724</isbn><eisbn>1424475716</eisbn><eisbn>9781424475735</eisbn><eisbn>9781424475711</eisbn><eisbn>1424475732</eisbn><abstract>In medical qualitative research, medical researchers analyze historical patient data to verify known relationships and to discover unknown relationships among medical attributes. All the existing algorithms to solve this problem use measures which are asymmetric measure, so only one direction of the rule (P -&gt; Q or Q-&gt;P) is taken into account. However, medical researchers are interested to find both asymmetric and symmetric relationship among medical attributes. We have developed pruning strategies and devised an efficient algorithm for the symmetric relationship problem. We propose measuring interestingness of known symmetric relationships and unknown symmetric relationships via the correlation measure of antecedent items and consequent items. We have demonstrated its effectiveness by testing it on real dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICDIM.2010.5664639</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424475728
ispartof 2010 Fifth International Conference on Digital Information Management (ICDIM), 2010, p.81-86
issn
language eng
recordid cdi_ieee_primary_5664639
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Association rules
Correlation
Dictionaries
Itemsets
Medical diagnostic imaging
Size measurement
title Finding symmetric association rules to support medical qualitative research
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20symmetric%20association%20rules%20to%20support%20medical%20qualitative%20research&rft.btitle=2010%20Fifth%20International%20Conference%20on%20Digital%20Information%20Management%20(ICDIM)&rft.au=Paul,%20R&rft.date=2010-07&rft.spage=81&rft.epage=86&rft.pages=81-86&rft.isbn=9781424475728&rft.isbn_list=1424475724&rft_id=info:doi/10.1109/ICDIM.2010.5664639&rft.eisbn=1424475716&rft.eisbn_list=9781424475735&rft.eisbn_list=9781424475711&rft.eisbn_list=1424475732&rft_dat=%3Cieee_6IE%3E5664639%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-1720bf17cb2a2e0e2b8a4b8a3ffd86ea9625557efd196cdfe837cf0fb02f5a883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5664639&rfr_iscdi=true