Loading…

Remember and transfer what you have learned - recognizing composite activities based on activity spotting

Activity recognition approaches have shown to enable good performance for a wide variety of applications. Most approaches rely on machine learning techniques requiring significant amounts of training data for each application. Consequently they have to be retrained for each new application limiting...

Full description

Saved in:
Bibliographic Details
Main Authors: Blanke, U, Schiele, B
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Blanke, U
Schiele, B
description Activity recognition approaches have shown to enable good performance for a wide variety of applications. Most approaches rely on machine learning techniques requiring significant amounts of training data for each application. Consequently they have to be retrained for each new application limiting the real-world applicability of today's activity recognition methods. This paper explores the possibility to transfer learned knowledge from one application to others thereby significantly reducing the required training data for new applications. To achieve this transferability the paper proposes a new layered activity recognition approach that lends itself to transfer knowledge across applications. Besides allowing to transfer knowledge across applications this layered approach also shows improved recognition performance both of composite activities as well as of activity events.
doi_str_mv 10.1109/ISWC.2010.5665869
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5665869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5665869</ieee_id><sourcerecordid>5665869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-85c11f7eb5b00d2174aa3521f542a3f085d2c53affe146404bd8de4b779868153</originalsourceid><addsrcrecordid>eNpFUNtKAzEQjTew1n6A-JIf2JrJZpLdRyleCgXBCz6W7O6kjXR3yyZW6tcbsOK8DOfCYc4wdgViCiDKm_nL-2wqRYKoNRa6PGIXoKRSpVCoj9lI5kZnBSo4-Re0OmUjQBSZKkCfs0kIHyINSmMUjph_ppbaigZuu4bHwXbBJfC1tpHv-0--tjviG7JDRw3P-EB1v-r8t-9WvO7bbR98JG7r6Hc-egq8siEZ--6P2_Ow7WNM_kt25uwm0OSwx-zt_u519pgtnh7ms9tF5qWCmO6vAZyhCishGglGWZujBIdK2tyJAhtZY26dI0jthKqaoiFVGVMWugDMx-z6N9cT0XI7-NYO--XhZfkPWYNc3A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Remember and transfer what you have learned - recognizing composite activities based on activity spotting</title><source>IEEE Xplore All Conference Series</source><creator>Blanke, U ; Schiele, B</creator><creatorcontrib>Blanke, U ; Schiele, B</creatorcontrib><description>Activity recognition approaches have shown to enable good performance for a wide variety of applications. Most approaches rely on machine learning techniques requiring significant amounts of training data for each application. Consequently they have to be retrained for each new application limiting the real-world applicability of today's activity recognition methods. This paper explores the possibility to transfer learned knowledge from one application to others thereby significantly reducing the required training data for new applications. To achieve this transferability the paper proposes a new layered activity recognition approach that lends itself to transfer knowledge across applications. Besides allowing to transfer knowledge across applications this layered approach also shows improved recognition performance both of composite activities as well as of activity events.</description><identifier>ISSN: 1550-4816</identifier><identifier>ISBN: 1424490464</identifier><identifier>ISBN: 9781424490462</identifier><identifier>EISSN: 2376-8541</identifier><identifier>EISBN: 1424490456</identifier><identifier>EISBN: 9781424490455</identifier><identifier>DOI: 10.1109/ISWC.2010.5665869</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Hidden Markov models ; Joints ; Knowledge transfer ; Mirrors ; Training ; Training data</subject><ispartof>International Symposium on Wearable Computers (ISWC) 2010, 2010, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5665869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54542,54907,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5665869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blanke, U</creatorcontrib><creatorcontrib>Schiele, B</creatorcontrib><title>Remember and transfer what you have learned - recognizing composite activities based on activity spotting</title><title>International Symposium on Wearable Computers (ISWC) 2010</title><addtitle>ISWC</addtitle><description>Activity recognition approaches have shown to enable good performance for a wide variety of applications. Most approaches rely on machine learning techniques requiring significant amounts of training data for each application. Consequently they have to be retrained for each new application limiting the real-world applicability of today's activity recognition methods. This paper explores the possibility to transfer learned knowledge from one application to others thereby significantly reducing the required training data for new applications. To achieve this transferability the paper proposes a new layered activity recognition approach that lends itself to transfer knowledge across applications. Besides allowing to transfer knowledge across applications this layered approach also shows improved recognition performance both of composite activities as well as of activity events.</description><subject>Data models</subject><subject>Hidden Markov models</subject><subject>Joints</subject><subject>Knowledge transfer</subject><subject>Mirrors</subject><subject>Training</subject><subject>Training data</subject><issn>1550-4816</issn><issn>2376-8541</issn><isbn>1424490464</isbn><isbn>9781424490462</isbn><isbn>1424490456</isbn><isbn>9781424490455</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUNtKAzEQjTew1n6A-JIf2JrJZpLdRyleCgXBCz6W7O6kjXR3yyZW6tcbsOK8DOfCYc4wdgViCiDKm_nL-2wqRYKoNRa6PGIXoKRSpVCoj9lI5kZnBSo4-Re0OmUjQBSZKkCfs0kIHyINSmMUjph_ppbaigZuu4bHwXbBJfC1tpHv-0--tjviG7JDRw3P-EB1v-r8t-9WvO7bbR98JG7r6Hc-egq8siEZ--6P2_Ow7WNM_kt25uwm0OSwx-zt_u519pgtnh7ms9tF5qWCmO6vAZyhCishGglGWZujBIdK2tyJAhtZY26dI0jthKqaoiFVGVMWugDMx-z6N9cT0XI7-NYO--XhZfkPWYNc3A</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Blanke, U</creator><creator>Schiele, B</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Remember and transfer what you have learned - recognizing composite activities based on activity spotting</title><author>Blanke, U ; Schiele, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-85c11f7eb5b00d2174aa3521f542a3f085d2c53affe146404bd8de4b779868153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Data models</topic><topic>Hidden Markov models</topic><topic>Joints</topic><topic>Knowledge transfer</topic><topic>Mirrors</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Blanke, U</creatorcontrib><creatorcontrib>Schiele, B</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blanke, U</au><au>Schiele, B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Remember and transfer what you have learned - recognizing composite activities based on activity spotting</atitle><btitle>International Symposium on Wearable Computers (ISWC) 2010</btitle><stitle>ISWC</stitle><date>2010-10</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1550-4816</issn><eissn>2376-8541</eissn><isbn>1424490464</isbn><isbn>9781424490462</isbn><eisbn>1424490456</eisbn><eisbn>9781424490455</eisbn><abstract>Activity recognition approaches have shown to enable good performance for a wide variety of applications. Most approaches rely on machine learning techniques requiring significant amounts of training data for each application. Consequently they have to be retrained for each new application limiting the real-world applicability of today's activity recognition methods. This paper explores the possibility to transfer learned knowledge from one application to others thereby significantly reducing the required training data for new applications. To achieve this transferability the paper proposes a new layered activity recognition approach that lends itself to transfer knowledge across applications. Besides allowing to transfer knowledge across applications this layered approach also shows improved recognition performance both of composite activities as well as of activity events.</abstract><pub>IEEE</pub><doi>10.1109/ISWC.2010.5665869</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-4816
ispartof International Symposium on Wearable Computers (ISWC) 2010, 2010, p.1-8
issn 1550-4816
2376-8541
language eng
recordid cdi_ieee_primary_5665869
source IEEE Xplore All Conference Series
subjects Data models
Hidden Markov models
Joints
Knowledge transfer
Mirrors
Training
Training data
title Remember and transfer what you have learned - recognizing composite activities based on activity spotting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Remember%20and%20transfer%20what%20you%20have%20learned%20-%20recognizing%20composite%20activities%20based%20on%20activity%20spotting&rft.btitle=International%20Symposium%20on%20Wearable%20Computers%20(ISWC)%202010&rft.au=Blanke,%20U&rft.date=2010-10&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1550-4816&rft.eissn=2376-8541&rft.isbn=1424490464&rft.isbn_list=9781424490462&rft_id=info:doi/10.1109/ISWC.2010.5665869&rft.eisbn=1424490456&rft.eisbn_list=9781424490455&rft_dat=%3Cieee_CHZPO%3E5665869%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-85c11f7eb5b00d2174aa3521f542a3f085d2c53affe146404bd8de4b779868153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5665869&rfr_iscdi=true