Loading…

A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time

This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a l...

Full description

Saved in:
Bibliographic Details
Main Authors: Chiuh-Cheng Chyu, Wei-Shung Chang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Chiuh-Cheng Chyu
Wei-Shung Chang
description This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures.
doi_str_mv 10.1109/ICCIE.2010.5668388
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5668388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5668388</ieee_id><sourcerecordid>5668388</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d281d2d7d1b5595ef37e1b9409ed9d1acb98083a957becd826e6663f59d13e403</originalsourceid><addsrcrecordid>eNo1kEFOwzAQRY0QElB6AdjMBQp2HDv2sooKVKrEpvvKiSeJkZ1UjtuqXIIrE0SZzZ-v92cWn5BHRp8Zo_plXZbr1XNGJy-kVFypKzLXhWJ5ludFpiW_Jvf_RuS3ZD6On3QakRVc5nfkewn1EPaYXHJHBDwO_pDc0MOYoknYniFgmGgNxrdDdKkL0AwRDn1EPwUs7E003qOHYOrO9Qhj3aE9eNe3kAYIrnfBfeG0J-PhhK7tfs-SiXZKjyOY3kLjhxMkF_CB3DTGjzi_6IxsX1fb8n2x-Xhbl8vNwmmaFjZTzGa2sKwSQgtseIGs0jnVaLVlpq60ooobLYoKa6syiVJK3ogJcswpn5Gnv7cOEXf76IKJ592lQv4DyZhpbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chiuh-Cheng Chyu ; Wei-Shung Chang</creator><creatorcontrib>Chiuh-Cheng Chyu ; Wei-Shung Chang</creatorcontrib><description>This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures.</description><identifier>ISBN: 1424472954</identifier><identifier>ISBN: 9781424472956</identifier><identifier>EISBN: 9781424472963</identifier><identifier>EISBN: 1424472962</identifier><identifier>EISBN: 1424472970</identifier><identifier>EISBN: 9781424472970</identifier><identifier>DOI: 10.1109/ICCIE.2010.5668388</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Decoding ; Evolutionary computation ; Job shop scheduling ; memetic algorithms ; Memetics ; Multi-objective optimization ; Parallel machines ; unrelated parallel machine scheduling</subject><ispartof>The 40th International Conference on Computers &amp; Indutrial Engineering, 2010, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5668388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5668388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chiuh-Cheng Chyu</creatorcontrib><creatorcontrib>Wei-Shung Chang</creatorcontrib><title>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</title><title>The 40th International Conference on Computers &amp; Indutrial Engineering</title><addtitle>ICCIE</addtitle><description>This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures.</description><subject>Algorithm design and analysis</subject><subject>Decoding</subject><subject>Evolutionary computation</subject><subject>Job shop scheduling</subject><subject>memetic algorithms</subject><subject>Memetics</subject><subject>Multi-objective optimization</subject><subject>Parallel machines</subject><subject>unrelated parallel machine scheduling</subject><isbn>1424472954</isbn><isbn>9781424472956</isbn><isbn>9781424472963</isbn><isbn>1424472962</isbn><isbn>1424472970</isbn><isbn>9781424472970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kEFOwzAQRY0QElB6AdjMBQp2HDv2sooKVKrEpvvKiSeJkZ1UjtuqXIIrE0SZzZ-v92cWn5BHRp8Zo_plXZbr1XNGJy-kVFypKzLXhWJ5ludFpiW_Jvf_RuS3ZD6On3QakRVc5nfkewn1EPaYXHJHBDwO_pDc0MOYoknYniFgmGgNxrdDdKkL0AwRDn1EPwUs7E003qOHYOrO9Qhj3aE9eNe3kAYIrnfBfeG0J-PhhK7tfs-SiXZKjyOY3kLjhxMkF_CB3DTGjzi_6IxsX1fb8n2x-Xhbl8vNwmmaFjZTzGa2sKwSQgtseIGs0jnVaLVlpq60ooobLYoKa6syiVJK3ogJcswpn5Gnv7cOEXf76IKJ592lQv4DyZhpbQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Chiuh-Cheng Chyu</creator><creator>Wei-Shung Chang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</title><author>Chiuh-Cheng Chyu ; Wei-Shung Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d281d2d7d1b5595ef37e1b9409ed9d1acb98083a957becd826e6663f59d13e403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Decoding</topic><topic>Evolutionary computation</topic><topic>Job shop scheduling</topic><topic>memetic algorithms</topic><topic>Memetics</topic><topic>Multi-objective optimization</topic><topic>Parallel machines</topic><topic>unrelated parallel machine scheduling</topic><toplevel>online_resources</toplevel><creatorcontrib>Chiuh-Cheng Chyu</creatorcontrib><creatorcontrib>Wei-Shung Chang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiuh-Cheng Chyu</au><au>Wei-Shung Chang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</atitle><btitle>The 40th International Conference on Computers &amp; Indutrial Engineering</btitle><stitle>ICCIE</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424472954</isbn><isbn>9781424472956</isbn><eisbn>9781424472963</eisbn><eisbn>1424472962</eisbn><eisbn>1424472970</eisbn><eisbn>9781424472970</eisbn><abstract>This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures.</abstract><pub>IEEE</pub><doi>10.1109/ICCIE.2010.5668388</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424472954
ispartof The 40th International Conference on Computers & Indutrial Engineering, 2010, p.1-6
issn
language eng
recordid cdi_ieee_primary_5668388
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Decoding
Evolutionary computation
Job shop scheduling
memetic algorithms
Memetics
Multi-objective optimization
Parallel machines
unrelated parallel machine scheduling
title A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20competitive%20evolution%20strategy%20memetic%20algorithm%20for%20unrelated%20parallel%20machine%20scheduling%20to%20minimize%20total%20weighted%20tardiness%20and%20flow%20time&rft.btitle=The%2040th%20International%20Conference%20on%20Computers%20&%20Indutrial%20Engineering&rft.au=Chiuh-Cheng%20Chyu&rft.date=2010-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424472954&rft.isbn_list=9781424472956&rft_id=info:doi/10.1109/ICCIE.2010.5668388&rft.eisbn=9781424472963&rft.eisbn_list=1424472962&rft.eisbn_list=1424472970&rft.eisbn_list=9781424472970&rft_dat=%3Cieee_6IE%3E5668388%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-d281d2d7d1b5595ef37e1b9409ed9d1acb98083a957becd826e6663f59d13e403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5668388&rfr_iscdi=true