Loading…
A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time
This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a l...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chiuh-Cheng Chyu Wei-Shung Chang |
description | This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures. |
doi_str_mv | 10.1109/ICCIE.2010.5668388 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5668388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5668388</ieee_id><sourcerecordid>5668388</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d281d2d7d1b5595ef37e1b9409ed9d1acb98083a957becd826e6663f59d13e403</originalsourceid><addsrcrecordid>eNo1kEFOwzAQRY0QElB6AdjMBQp2HDv2sooKVKrEpvvKiSeJkZ1UjtuqXIIrE0SZzZ-v92cWn5BHRp8Zo_plXZbr1XNGJy-kVFypKzLXhWJ5ludFpiW_Jvf_RuS3ZD6On3QakRVc5nfkewn1EPaYXHJHBDwO_pDc0MOYoknYniFgmGgNxrdDdKkL0AwRDn1EPwUs7E003qOHYOrO9Qhj3aE9eNe3kAYIrnfBfeG0J-PhhK7tfs-SiXZKjyOY3kLjhxMkF_CB3DTGjzi_6IxsX1fb8n2x-Xhbl8vNwmmaFjZTzGa2sKwSQgtseIGs0jnVaLVlpq60ooobLYoKa6syiVJK3ogJcswpn5Gnv7cOEXf76IKJ592lQv4DyZhpbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chiuh-Cheng Chyu ; Wei-Shung Chang</creator><creatorcontrib>Chiuh-Cheng Chyu ; Wei-Shung Chang</creatorcontrib><description>This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures.</description><identifier>ISBN: 1424472954</identifier><identifier>ISBN: 9781424472956</identifier><identifier>EISBN: 9781424472963</identifier><identifier>EISBN: 1424472962</identifier><identifier>EISBN: 1424472970</identifier><identifier>EISBN: 9781424472970</identifier><identifier>DOI: 10.1109/ICCIE.2010.5668388</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Decoding ; Evolutionary computation ; Job shop scheduling ; memetic algorithms ; Memetics ; Multi-objective optimization ; Parallel machines ; unrelated parallel machine scheduling</subject><ispartof>The 40th International Conference on Computers & Indutrial Engineering, 2010, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5668388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5668388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chiuh-Cheng Chyu</creatorcontrib><creatorcontrib>Wei-Shung Chang</creatorcontrib><title>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</title><title>The 40th International Conference on Computers & Indutrial Engineering</title><addtitle>ICCIE</addtitle><description>This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures.</description><subject>Algorithm design and analysis</subject><subject>Decoding</subject><subject>Evolutionary computation</subject><subject>Job shop scheduling</subject><subject>memetic algorithms</subject><subject>Memetics</subject><subject>Multi-objective optimization</subject><subject>Parallel machines</subject><subject>unrelated parallel machine scheduling</subject><isbn>1424472954</isbn><isbn>9781424472956</isbn><isbn>9781424472963</isbn><isbn>1424472962</isbn><isbn>1424472970</isbn><isbn>9781424472970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kEFOwzAQRY0QElB6AdjMBQp2HDv2sooKVKrEpvvKiSeJkZ1UjtuqXIIrE0SZzZ-v92cWn5BHRp8Zo_plXZbr1XNGJy-kVFypKzLXhWJ5ludFpiW_Jvf_RuS3ZD6On3QakRVc5nfkewn1EPaYXHJHBDwO_pDc0MOYoknYniFgmGgNxrdDdKkL0AwRDn1EPwUs7E003qOHYOrO9Qhj3aE9eNe3kAYIrnfBfeG0J-PhhK7tfs-SiXZKjyOY3kLjhxMkF_CB3DTGjzi_6IxsX1fb8n2x-Xhbl8vNwmmaFjZTzGa2sKwSQgtseIGs0jnVaLVlpq60ooobLYoKa6syiVJK3ogJcswpn5Gnv7cOEXf76IKJ592lQv4DyZhpbQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Chiuh-Cheng Chyu</creator><creator>Wei-Shung Chang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</title><author>Chiuh-Cheng Chyu ; Wei-Shung Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d281d2d7d1b5595ef37e1b9409ed9d1acb98083a957becd826e6663f59d13e403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Decoding</topic><topic>Evolutionary computation</topic><topic>Job shop scheduling</topic><topic>memetic algorithms</topic><topic>Memetics</topic><topic>Multi-objective optimization</topic><topic>Parallel machines</topic><topic>unrelated parallel machine scheduling</topic><toplevel>online_resources</toplevel><creatorcontrib>Chiuh-Cheng Chyu</creatorcontrib><creatorcontrib>Wei-Shung Chang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiuh-Cheng Chyu</au><au>Wei-Shung Chang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time</atitle><btitle>The 40th International Conference on Computers & Indutrial Engineering</btitle><stitle>ICCIE</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424472954</isbn><isbn>9781424472956</isbn><eisbn>9781424472963</eisbn><eisbn>1424472962</eisbn><eisbn>1424472970</eisbn><eisbn>9781424472970</eisbn><abstract>This research proposes a competitive evolution strategy memetic algorithm (CESMA) to solve unrelated parallel machines scheduling problems with two minimization objectives subject to job sequence- and machine-dependent setup times. A memetic operation is regarded as a genetic operation following a local search-weighted bipartite matching algorithm (WBM). The competitive evolution strategy maintains one generational population (GP) and two external archives at each generation, one preserving efficient solutions and the other preserving inefficient solutions. At each generation, two procedures, EAMA (efficient archive memetic algorithm) and IAMA (inefficient archive memetic algorithm), are applied to compete for producing the next generation offspring. The fraction p of memetic operations assigned to EAMA varies at each generation and depends on the competition results of the last generation. An experiment is conducted to compare the performance of the CESMA against two well-known evolutionary algorithms (NSGA II and SPEA2) with WBM. The effects of incorporating the WBM into these algorithms are also investigated. In the experimental study, three instances of different problem parameters were generated using a method in the literature. The experimental results show that the CESMA excels the others in terms of several proximity measures.</abstract><pub>IEEE</pub><doi>10.1109/ICCIE.2010.5668388</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424472954 |
ispartof | The 40th International Conference on Computers & Indutrial Engineering, 2010, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5668388 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Decoding Evolutionary computation Job shop scheduling memetic algorithms Memetics Multi-objective optimization Parallel machines unrelated parallel machine scheduling |
title | A competitive evolution strategy memetic algorithm for unrelated parallel machine scheduling to minimize total weighted tardiness and flow time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20competitive%20evolution%20strategy%20memetic%20algorithm%20for%20unrelated%20parallel%20machine%20scheduling%20to%20minimize%20total%20weighted%20tardiness%20and%20flow%20time&rft.btitle=The%2040th%20International%20Conference%20on%20Computers%20&%20Indutrial%20Engineering&rft.au=Chiuh-Cheng%20Chyu&rft.date=2010-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424472954&rft.isbn_list=9781424472956&rft_id=info:doi/10.1109/ICCIE.2010.5668388&rft.eisbn=9781424472963&rft.eisbn_list=1424472962&rft.eisbn_list=1424472970&rft.eisbn_list=9781424472970&rft_dat=%3Cieee_6IE%3E5668388%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-d281d2d7d1b5595ef37e1b9409ed9d1acb98083a957becd826e6663f59d13e403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5668388&rfr_iscdi=true |