Loading…

A Multi-Objective Genetic Algorithm to Test Data Generation

Evolutionary testing has successfully applied search based optimization algorithms to the test data generation problem. The existing works use different techniques and fitness functions. However, the used functions consider only one objective, which is, in general, related to the coverage of a testi...

Full description

Saved in:
Bibliographic Details
Main Authors: Pinto, G H L, Vergilio, S R
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c219t-b3ec6ee247a2fe394218441ecdaaa6d84403cda4e9ddca3d55db4da693823dc33
cites
container_end_page 134
container_issue
container_start_page 129
container_title
container_volume 1
creator Pinto, G H L
Vergilio, S R
description Evolutionary testing has successfully applied search based optimization algorithms to the test data generation problem. The existing works use different techniques and fitness functions. However, the used functions consider only one objective, which is, in general, related to the coverage of a testing criterion. But, in practice, there are many factors that can influence the generation of test data, such as memory consumption, execution time, revealed faults, and etc. Considering this fact, this work explores a multiobjective optimization approach for test data generation. A framework that implements a multi-objective genetic algorithm is described. Two different representations for the population are used, which allows the test of procedural and object-oriented code. Combinations of three objectives are experimentally evaluated: coverage of structural test criteria, ability to reveal faults, and execution time.
doi_str_mv 10.1109/ICTAI.2010.26
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5670025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5670025</ieee_id><sourcerecordid>5670025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-b3ec6ee247a2fe394218441ecdaaa6d84403cda4e9ddca3d55db4da693823dc33</originalsourceid><addsrcrecordid>eNotjMtOwzAURC0eEqV0yYqNf8DFvn7FYhWFUiIVdRPWlWPfgqu0QYlB4u-JgNnMORppCLkVfCkEd_d11ZT1EvjkYM7IDKTVjAtnz8m1UKBUUQhrLshM8AKYVNxdkcU4HvgUDVZZPiMPJX357HJi2_aAIacvpGs8YU6Blt1bP6T8fqS5pw2OmT767H_nwefUn27I5d53Iy7-e05en1ZN9cw223VdlRsWQLjMWonBIIKyHvYonQJRKCUwRO-9iRNzObFCF2PwMmodWxW9cbIAGYOUc3L395sQcfcxpKMfvnfaWM5Byx_7gkjT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Multi-Objective Genetic Algorithm to Test Data Generation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pinto, G H L ; Vergilio, S R</creator><creatorcontrib>Pinto, G H L ; Vergilio, S R</creatorcontrib><description>Evolutionary testing has successfully applied search based optimization algorithms to the test data generation problem. The existing works use different techniques and fitness functions. However, the used functions consider only one objective, which is, in general, related to the coverage of a testing criterion. But, in practice, there are many factors that can influence the generation of test data, such as memory consumption, execution time, revealed faults, and etc. Considering this fact, this work explores a multiobjective optimization approach for test data generation. A framework that implements a multi-objective genetic algorithm is described. Two different representations for the population are used, which allows the test of procedural and object-oriented code. Combinations of three objectives are experimentally evaluated: coverage of structural test criteria, ability to reveal faults, and execution time.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 1424488176</identifier><identifier>ISBN: 9781424488179</identifier><identifier>EISSN: 2375-0197</identifier><identifier>DOI: 10.1109/ICTAI.2010.26</identifier><language>eng</language><publisher>IEEE</publisher><subject>Context ; Genetics ; Java ; Memory management ; Optimization ; Software ; Testing</subject><ispartof>2010 22nd IEEE International Conference on Tools with Artificial Intelligence, 2010, Vol.1, p.129-134</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-b3ec6ee247a2fe394218441ecdaaa6d84403cda4e9ddca3d55db4da693823dc33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5670025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5670025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pinto, G H L</creatorcontrib><creatorcontrib>Vergilio, S R</creatorcontrib><title>A Multi-Objective Genetic Algorithm to Test Data Generation</title><title>2010 22nd IEEE International Conference on Tools with Artificial Intelligence</title><addtitle>ictai</addtitle><description>Evolutionary testing has successfully applied search based optimization algorithms to the test data generation problem. The existing works use different techniques and fitness functions. However, the used functions consider only one objective, which is, in general, related to the coverage of a testing criterion. But, in practice, there are many factors that can influence the generation of test data, such as memory consumption, execution time, revealed faults, and etc. Considering this fact, this work explores a multiobjective optimization approach for test data generation. A framework that implements a multi-objective genetic algorithm is described. Two different representations for the population are used, which allows the test of procedural and object-oriented code. Combinations of three objectives are experimentally evaluated: coverage of structural test criteria, ability to reveal faults, and execution time.</description><subject>Context</subject><subject>Genetics</subject><subject>Java</subject><subject>Memory management</subject><subject>Optimization</subject><subject>Software</subject><subject>Testing</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>1424488176</isbn><isbn>9781424488179</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOwzAURC0eEqV0yYqNf8DFvn7FYhWFUiIVdRPWlWPfgqu0QYlB4u-JgNnMORppCLkVfCkEd_d11ZT1EvjkYM7IDKTVjAtnz8m1UKBUUQhrLshM8AKYVNxdkcU4HvgUDVZZPiMPJX357HJi2_aAIacvpGs8YU6Blt1bP6T8fqS5pw2OmT767H_nwefUn27I5d53Iy7-e05en1ZN9cw223VdlRsWQLjMWonBIIKyHvYonQJRKCUwRO-9iRNzObFCF2PwMmodWxW9cbIAGYOUc3L395sQcfcxpKMfvnfaWM5Byx_7gkjT</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Pinto, G H L</creator><creator>Vergilio, S R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>A Multi-Objective Genetic Algorithm to Test Data Generation</title><author>Pinto, G H L ; Vergilio, S R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-b3ec6ee247a2fe394218441ecdaaa6d84403cda4e9ddca3d55db4da693823dc33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Context</topic><topic>Genetics</topic><topic>Java</topic><topic>Memory management</topic><topic>Optimization</topic><topic>Software</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinto, G H L</creatorcontrib><creatorcontrib>Vergilio, S R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinto, G H L</au><au>Vergilio, S R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Multi-Objective Genetic Algorithm to Test Data Generation</atitle><btitle>2010 22nd IEEE International Conference on Tools with Artificial Intelligence</btitle><stitle>ictai</stitle><date>2010-10</date><risdate>2010</risdate><volume>1</volume><spage>129</spage><epage>134</epage><pages>129-134</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>1424488176</isbn><isbn>9781424488179</isbn><abstract>Evolutionary testing has successfully applied search based optimization algorithms to the test data generation problem. The existing works use different techniques and fitness functions. However, the used functions consider only one objective, which is, in general, related to the coverage of a testing criterion. But, in practice, there are many factors that can influence the generation of test data, such as memory consumption, execution time, revealed faults, and etc. Considering this fact, this work explores a multiobjective optimization approach for test data generation. A framework that implements a multi-objective genetic algorithm is described. Two different representations for the population are used, which allows the test of procedural and object-oriented code. Combinations of three objectives are experimentally evaluated: coverage of structural test criteria, ability to reveal faults, and execution time.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2010.26</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, 2010, Vol.1, p.129-134
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_5670025
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Context
Genetics
Java
Memory management
Optimization
Software
Testing
title A Multi-Objective Genetic Algorithm to Test Data Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Multi-Objective%20Genetic%20Algorithm%20to%20Test%20Data%20Generation&rft.btitle=2010%2022nd%20IEEE%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Pinto,%20G%20H%20L&rft.date=2010-10&rft.volume=1&rft.spage=129&rft.epage=134&rft.pages=129-134&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=1424488176&rft.isbn_list=9781424488179&rft_id=info:doi/10.1109/ICTAI.2010.26&rft_dat=%3Cieee_6IE%3E5670025%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-b3ec6ee247a2fe394218441ecdaaa6d84403cda4e9ddca3d55db4da693823dc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5670025&rfr_iscdi=true