Loading…
All-Pairs Shortest Paths in O(n²) Time with High Probability
We present an all-pairs shortest path algorithm whose running time on a complete directed graph on n vertices whose edge weights are chosen independently and uniformly at random from [0,1] is O(n 2 ), in expectation and with high probability. This resolves a long standing open problem. The algorithm...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 672 |
container_issue | |
container_start_page | 663 |
container_title | |
container_volume | |
creator | Peres, Y Sotnikov, D Sudakov, B Zwick, U |
description | We present an all-pairs shortest path algorithm whose running time on a complete directed graph on n vertices whose edge weights are chosen independently and uniformly at random from [0,1] is O(n 2 ), in expectation and with high probability. This resolves a long standing open problem. The algorithm is a variant of the dynamic all-pairs shortest paths algorithm of Demetrescu and Italiano. The analysis relies on a proof that the number of locally shortest paths in such randomly weighted graphs is O(n 2 ), in expectation and with high probability. We also present a dynamic version of the algorithm that recomputes all shortest paths after a random edge update in O(log 2 n) expected time. |
doi_str_mv | 10.1109/FOCS.2010.69 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_5671327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5671327</ieee_id><sourcerecordid>5671327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a2bf85d2e21fa17b0027fd212d3601c8af58fd074d2e2f79d3f571b1844e850f3</originalsourceid><addsrcrecordid>eNpNjsFKAzEURQNasK3u3LnJUhdT33tJJunCRRlaKxRmoHVdMk7iRKatTALS3_IT_DIrunB174HL4TJ2jTBBhOn9oizWE4IT5tMzNkJJUhpFypyzIZCmTEkyg3_9go1ifAOQoEAM2cOs67LKhj7ydXvok4uJVza1kYc9L2_3X593fBN2jn-E1PJleG151R9qW4cupOMlG3jbRXf1l2P2vJhvimW2Kh-fitkqC6hVyizV3qiGHKG3qGs4vfENITUiB3wx1ivjG9DyZ-L1tBFeaazRSOmMAi_G7ObXG5xz2_c-7Gx_3KpcoyAtvgGkrUfO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>All-Pairs Shortest Paths in O(n²) Time with High Probability</title><source>IEEE Xplore All Conference Series</source><creator>Peres, Y ; Sotnikov, D ; Sudakov, B ; Zwick, U</creator><creatorcontrib>Peres, Y ; Sotnikov, D ; Sudakov, B ; Zwick, U</creatorcontrib><description>We present an all-pairs shortest path algorithm whose running time on a complete directed graph on n vertices whose edge weights are chosen independently and uniformly at random from [0,1] is O(n 2 ), in expectation and with high probability. This resolves a long standing open problem. The algorithm is a variant of the dynamic all-pairs shortest paths algorithm of Demetrescu and Italiano. The analysis relies on a proof that the number of locally shortest paths in such randomly weighted graphs is O(n 2 ), in expectation and with high probability. We also present a dynamic version of the algorithm that recomputes all shortest paths after a random edge update in O(log 2 n) expected time.</description><identifier>ISSN: 0272-5428</identifier><identifier>ISBN: 1424485258</identifier><identifier>ISBN: 9781424485253</identifier><identifier>DOI: 10.1109/FOCS.2010.69</identifier><identifier>LCCN: 0272-5428</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data structures ; graph algorithms ; Harmonic analysis ; Heuristic algorithms ; Probabilistic logic ; random graphs ; Random variables ; shortest paths ; Upper bound</subject><ispartof>2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 2010, p.663-672</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5671327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5671327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peres, Y</creatorcontrib><creatorcontrib>Sotnikov, D</creatorcontrib><creatorcontrib>Sudakov, B</creatorcontrib><creatorcontrib>Zwick, U</creatorcontrib><title>All-Pairs Shortest Paths in O(n²) Time with High Probability</title><title>2010 IEEE 51st Annual Symposium on Foundations of Computer Science</title><addtitle>focs</addtitle><description>We present an all-pairs shortest path algorithm whose running time on a complete directed graph on n vertices whose edge weights are chosen independently and uniformly at random from [0,1] is O(n 2 ), in expectation and with high probability. This resolves a long standing open problem. The algorithm is a variant of the dynamic all-pairs shortest paths algorithm of Demetrescu and Italiano. The analysis relies on a proof that the number of locally shortest paths in such randomly weighted graphs is O(n 2 ), in expectation and with high probability. We also present a dynamic version of the algorithm that recomputes all shortest paths after a random edge update in O(log 2 n) expected time.</description><subject>Algorithm design and analysis</subject><subject>Data structures</subject><subject>graph algorithms</subject><subject>Harmonic analysis</subject><subject>Heuristic algorithms</subject><subject>Probabilistic logic</subject><subject>random graphs</subject><subject>Random variables</subject><subject>shortest paths</subject><subject>Upper bound</subject><issn>0272-5428</issn><isbn>1424485258</isbn><isbn>9781424485253</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjsFKAzEURQNasK3u3LnJUhdT33tJJunCRRlaKxRmoHVdMk7iRKatTALS3_IT_DIrunB174HL4TJ2jTBBhOn9oizWE4IT5tMzNkJJUhpFypyzIZCmTEkyg3_9go1ifAOQoEAM2cOs67LKhj7ydXvok4uJVza1kYc9L2_3X593fBN2jn-E1PJleG151R9qW4cupOMlG3jbRXf1l2P2vJhvimW2Kh-fitkqC6hVyizV3qiGHKG3qGs4vfENITUiB3wx1ivjG9DyZ-L1tBFeaazRSOmMAi_G7ObXG5xz2_c-7Gx_3KpcoyAtvgGkrUfO</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Peres, Y</creator><creator>Sotnikov, D</creator><creator>Sudakov, B</creator><creator>Zwick, U</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>All-Pairs Shortest Paths in O(n²) Time with High Probability</title><author>Peres, Y ; Sotnikov, D ; Sudakov, B ; Zwick, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a2bf85d2e21fa17b0027fd212d3601c8af58fd074d2e2f79d3f571b1844e850f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Data structures</topic><topic>graph algorithms</topic><topic>Harmonic analysis</topic><topic>Heuristic algorithms</topic><topic>Probabilistic logic</topic><topic>random graphs</topic><topic>Random variables</topic><topic>shortest paths</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Peres, Y</creatorcontrib><creatorcontrib>Sotnikov, D</creatorcontrib><creatorcontrib>Sudakov, B</creatorcontrib><creatorcontrib>Zwick, U</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peres, Y</au><au>Sotnikov, D</au><au>Sudakov, B</au><au>Zwick, U</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>All-Pairs Shortest Paths in O(n²) Time with High Probability</atitle><btitle>2010 IEEE 51st Annual Symposium on Foundations of Computer Science</btitle><stitle>focs</stitle><date>2010-10</date><risdate>2010</risdate><spage>663</spage><epage>672</epage><pages>663-672</pages><issn>0272-5428</issn><isbn>1424485258</isbn><isbn>9781424485253</isbn><abstract>We present an all-pairs shortest path algorithm whose running time on a complete directed graph on n vertices whose edge weights are chosen independently and uniformly at random from [0,1] is O(n 2 ), in expectation and with high probability. This resolves a long standing open problem. The algorithm is a variant of the dynamic all-pairs shortest paths algorithm of Demetrescu and Italiano. The analysis relies on a proof that the number of locally shortest paths in such randomly weighted graphs is O(n 2 ), in expectation and with high probability. We also present a dynamic version of the algorithm that recomputes all shortest paths after a random edge update in O(log 2 n) expected time.</abstract><pub>IEEE</pub><doi>10.1109/FOCS.2010.69</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0272-5428 |
ispartof | 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 2010, p.663-672 |
issn | 0272-5428 |
language | eng |
recordid | cdi_ieee_primary_5671327 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Data structures graph algorithms Harmonic analysis Heuristic algorithms Probabilistic logic random graphs Random variables shortest paths Upper bound |
title | All-Pairs Shortest Paths in O(n²) Time with High Probability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=All-Pairs%20Shortest%20Paths%20in%20O(n%C2%B2)%20Time%20with%20High%20Probability&rft.btitle=2010%20IEEE%2051st%20Annual%20Symposium%20on%20Foundations%20of%20Computer%20Science&rft.au=Peres,%20Y&rft.date=2010-10&rft.spage=663&rft.epage=672&rft.pages=663-672&rft.issn=0272-5428&rft.isbn=1424485258&rft.isbn_list=9781424485253&rft_id=info:doi/10.1109/FOCS.2010.69&rft_dat=%3Cieee_CHZPO%3E5671327%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a2bf85d2e21fa17b0027fd212d3601c8af58fd074d2e2f79d3f571b1844e850f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5671327&rfr_iscdi=true |